Beam Instrumentation for Future High Intensity Hadron Accelerators at Fermilab

Manfred Wendt Fermilab

Project X Fermilab Hadron Activities

- Current HEP hadron accelerator activities
 - Tevatron: p -> pbar collider Run II (until September 2010)
 - NuMI: 120 GeV beam-line for neutrino experiments (290 kW)
 - 8 GeV beam-line to MiniBooNE, microBooNE
 - Switchyard beam-lines, e.g. MTest
- Beam Instrumentation
 - Stripline or split-plate BPM pickups, Echotek-based digital read-out electronics in most areas.
 - Transverse beam profile/ emittance characterization using flying wires, IPMs, OTRs, multi-wires, SWICS, SyncLight (TeV),...
 - Longitudinal beam monitors (WCM, read-out by high speed oscilloscopes or digitizers)
 - Beam halo characterization (crawling wire)
 - Beam loss detection (ionization chamber, scintillators & PMT)

8/25/2008

FNAL type

- Wire: 25 μm Ti (before W/Au)
- Ceramic substrate, w beam gap, wires epoxied to pads.
- University of Texas type
 - Signal planes: 5 µm Ti strips
 - Bias planes: 2.5 µm Ti foil

NuMI beam

- Energy: 120 GeV
- Intensity/pulse: 4x10¹³ protons
- Beam time: 8.56 μsec / 2.2 sec
- Power/spill: 140 kJoule
- Σ total: > 3x10²⁰ protons
- Extrapolation
 - 5 μm Ti strip (1660 degC 10 %):
 ~1.6x10¹⁴ protons (max)

Project X Ionization Chamber BLM 51 56 52 54 53 52 51 81 13 MADEINUSA 12¹⁶ 20²⁴ 28 4 8 12¹⁸ 20²⁴ 28 Signal Out Guard Lead 12 100 Cathode @ +2000 V **Specifications** 1.5" ANODE **Materials** Glass, Nickel Guard to reduce Volumen 110 ccm Argon gas at 1 Atm Leakage current Calibration 70 nC / rad **Response time** 1-2 µsec Leakage current < 10 pA **Operating range** 1 mrad – 100 rad

- Future hadron accelerator activities
 - 400 MeV MTA beam-line (muon cooling experiments, FY09)
 - NOvA upgrade for up to 700 kW beam power (120 GeV)
 - HINS: High intense SCRF H- injector (60 MeV) R&D
 - NML: SCRF beam test facility (runs with electrons, 750 MeV)
 - µ-to-e experiment, needs 8 GeV slow spill
 - Project X, based on a new SCRF 8 GeV H⁻ linac & HINS injector, 2 MW beam power (or more) @ 120 GeV
 - New 120 GeV beam-line to DUSEL (Homestake)
 - -...
- Most project are pre-CD0 (beam parameters not final)
- Instrumentation requirements need to be specified

• High beam intensities call for non-intercepting beam diagnostics

Project X

- Transverse beam size / emittance
 - Physical (intercepting) wires?
 - Laser wire (only H- beams)
 - Ionization profile monitors (calibration)
 - e-beam wire???
- Beam halo characterization (sensitivity, safety)
 - crawling wire, laser wire, vibrating wire
- Resonant extraction feedback systems
- Beam gap instrumentation (dynamic range 1:10⁹)
- Diagnostics for low energy beams (BPMs, emittance)
- Beam monitors as part of SCRF cryostats
 - BPM pickup (button or RF cavity style)
 - Use of HOM coupler signals
- Machine protection systems
 - BLM-based system with minimal response time (5-10 µsec total)
 - Reliability, absolute calibration
- Other challenges...?!

Project X BNL Laser Wire for HINS

Project X Fermilab LPM Test Setup

- Laser Profile Monitor details
 - Q-switch laser
 - Laser energy: 50 mJoule
 - Wavelength: 1064 nm
 - Pulse length: 9 nsec
 - Fast rotating mirrors (±4º / 100 µsec)
 - e⁻ detector: scintillator & PMT
- Installation:
 - 1st Test with 400 MeV H⁻
 - HINS: 2.5 & 60 MeV
- Upgrades & issues
 - CW laser for single macro pulse sweep
 - Detector system for 8 GeV setup

Electron Beam Profiler

 Nonperturbing electron beam probe to diagnose charged-particle beams. J.A.Pasour and M.T.Ngo, Rev. Sci. Instrum. 63 (5), May 1992.

Main Beam Current (A)

0.30

0.25

0.1

0.15

0.20

8/25/2008

• W. Nexsen et al., SSCL-631, May 1993.

• E. Tsyganov et al., Proc. 1993 PAC.

28pp.

Project X

0.40

0.35

Project X Cold BPM for NML / Project X

ermilab

- High resolution (~1 µm)
 CM-suppressed cavity BPM
- Simple structure to get cryogenic and cleanroom certification
- Fit into ILC cryomodule
- Operation at NML with
 - Project X CW-like beam
 (325 or 1300 MHz bunched)
 - ILC-like beam (~300 ns bunch spacing) single bunch acquisition
- $f_{110} = 1.3 \text{ GHz}, \text{ Q}_{\text{L}} \sim 500$
- Design needs more investigation on CM suppression.