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Los Alamos Neutron Science Center

LANSCE is a multi-user, multi-beam facility that produces intense sources of 
pulsed, spallation neutrons and proton beams in support of national security 
and civilian research.
LANSCE is comprised of a high-power 800 MeV proton linear accelerator (linac) 
and a proton storage ring and has been in operation for over 30 years.
• Formerly known as LAMPF, designed to provided 800 kW of beam for meson physics program

The LANSCE Experimental User Facilities includes
• The Proton Radiography (pRad) Facility, which provides time-sequenced radiographs of 

dynamic phenomena with billionths-of-a-second time resolution
• The Weapons Neutron Research (WNR) Facility that provides a source of unmoderated 

neutrons in the keV to multiple MeV range
• The Manuel Lujan Jr. Neutron Scattering Center (Lujan Center), which uses a time-compressed 

proton beam to make a moderated neutron source (meV to keV range)
• The Isotope Production Facility (IPF) is a source of research and medical radioisotopes for the 

nation
• The Ultra Cold Neutrons (UCN) which is a source of sub-μeV neutrons for fundamental physics 

research
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LANSCE Facility Overview
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•750 keV H+ and H- Injectors
•100 MeV Drift Tube Linac (4 tanks)
•800 MeV Coupled Cavity Linac (44 modules)
•800 MeV Compressor Ring (PSR)
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Typical 
Repetition 
Rate    
[Hz] 

Typical 
Pulse 
Length 
[ s] 

Linac 
Beam 
Species 

Typical 
Chopping 
Pattern 

Average 
Beam 
Current 
[ A] 

Nominal 
Energy 
[MeV] 

Avg 
Beam 
Power 
[kW] 

pRad ~1 300 H- 60 ns bursts 
every ~1  s 

< 1  ² 800  < 1 

WNR 
Tgt4 

²100  625 H- 1 pulse 
every ~2  s 

² 5  ² 800  ~ 4 

Lujan 20 625 H- 290 ns/358 ns 100 -125 800 80 - 100 

UCN 20 625 H- Lujan-beam 
like to 
unchopped 

< 2 800 < 1.6 

IPF ²30 i n 
Pulsed 
mode 

625 H+ NA ² 250  100 ² 25  

AreaA ²100  625 H+ NA 1000 800 ~ 800  inactive
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Linac Performance - Historical, Present & Demonstrated

Historical Performance
• 120 Hz x 625 µs beam gates -> 7.5% duty factor
• Combined and simultaneous H+ & H- operation (limited by peak RF power)
• Typical maximum peak beam current: 16.5 mA
• RF duty factor: ~ 10%

Present Performance
• 60 Hz Operation (limited by 7835 in DTL 201 MHz RF System)
• Peak beam current: ~13 mA (H- ion source limit)

Demonstrated Performance (non-coincident)
• RF duty factor: ~12%
• Beam gates: 1225 µs 
• Peak beam current: 21 mA ( 800 MeV with Iavg= 320 µA )
• 1 MW beam operation
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2008 Operating Schedule is Typical of Recent Years

Extended Maintenance 
January 1 thru May 5

Start-up ~ 1 month

Six blocks of “production 
beam” over a 6 1/2 
months
• ~ 24 day of user beam per 

cycle, including sole use
• Machine development
• Separated by maintenance 

activities and H- source 
recycle

Extended Maintenance 
begins Dec 20
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Beam Reliability - Accelerator Systems Performance
Lujan Center - CY2007 - 3255 hrs scheduled - 81.2 % reliability

Average number of 
trips per day for Lujan 
beam in CY2007

With beam-off 
time ≥ 1 min

5.3

With beam-off 
time > 1 hour

0.64

With beam-off 
time > 3 hour

0.2

Linac reliability: 93.4%
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Annual Facility Startup/Tuneup has Two Goals

Goals
• Achieve low-loss, stable, beam operation to all experimental areas

— Establish physics tune starting with last years set points as initial values
— Finish with empirical tweaking to reduce losses while raising average current

• Recertify Safety (RSS) and Protection Systems (RP, FP)
— Radiation Safety System (RSS) certification has 6 month lifetime 

• 80 checks performed bi-annually (few hours/check)
• moving toward rolling process to reduce peak load

— Machine protection certification performed annually
• Over 49 Run Permit (RP) (+ 40 Albatross Neutron Detectors) checks
• Over 24 Fast Protect (FP) checks

Perform in timely fashion and conserve energy ($$$’s)!
— Interlock checks and accelerator tune up are interleaved
— Approximately 1 month allocated to take facility from cold state to full production-level 

beams 
— Most tuneup performed with CCL RF at 10 Hz to save on cost of $1M/mo for 60Hz ops
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Tune-up Relies Heavily on All Available Beam Diagnostics

LEBT
Emittance: Slit/Coll
Beam profile: Harp
Intensity: CM

H+ Source

H- Source

100 MeV Drift Tube 
Linac 800 MeV Coupled-Cavity  Linac

Switchyard

DTL
Beam profile: Harp & WS
Intensity: CM
Longitudinal: Phase Scan 
(Abs/Col)
Spill: Scint/PT
(1 each per tank)

CCL
Beam profile: WS (1 per tank M5-8, 
1 per mod thereafter)
Intensity: CM (1 per mod)
Longitudinal phase profile: Phase 
scan Abs/Col @ M5
Longitudinal phase cent.: cap lp

(1 per mod, M5-13; 1 per 2 mod 
thereafter)
Spill:Scint/PT (2 per mod)

Transition Region
Beam profile: Harp & WS 
(multiple)
Intensity: CM
Emittance: Slit/Coll (both 
ends)
Spill: Scint/PT

Switchyard
Beam profile: WS
Intensity: CM
Spill: Scint/PT
Beam Cent: BPM
Long. Energy: Low 
mom. phosphor

LANSCE LINAC Diagnostic Overview 
Type: Interceptive (Red) Non-Interceptive(Green)
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Linac Physics Tune-Up is a Multi-Step Process

Basic strategy developed over many years of high-power, multi-beam 
operation 
• Use “zero” current beam measurements combined with previous predictions from 

single- and multi-particle beam dynamics models to to establish RF set points
— Models use ideal accelerating structures
— Mitigates complications from beam space charge 

• Use slit & collector (S&C), harp and wirescanner measurements to establish (and 
verify) matched beam conditions at entrance to DTL and CCL structures

• Use very low duty factor beam, i.e. 4 Hz x 150 µs to limit spill during manipulation 
of machine parameters and damage to interceptive diagnostics
— Pulse length chosen to allow beam to reach steady state conditions for 

measurements

Step 1: Establish full peak-current operation of Injectors and LEBTs
• Transverse tuning with multiple slit/collector emittance measurements & envelope 

code
• Peak currents set by source performance, experimental beam requirements and 

available duty factor 
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Linac Physics Tune-Up is a Multi-Step Process (cont.)

Step 2: Establish Longitudinal Tune of Linac at “zero” current
• LEBT 4-jaws used to reduce peak to ~1 mA (unchopped) and perform tune-up of 

linac (DTL & CCL) from 0.75 to 800 MeV
• Linac quadrupole lattice set to nominal design with some tweaks derived from “low-

loss, high-power” operation
• Transverse matching to target values derived from models
• Longitudinal tune

— DTL - phase scan of beam above energy threshold (target values derived from 
multi-particle simulations

— CCL - ∆T procedure (parameters derived from single-particle model 
calculations, optimized for either H+ or H-)

Step 3: Restore full peak beam and complete tune-up
• High-peak transverse match at injection to DTL and CCL
• Adjust beam energy out of DTL and CCL RF phase
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Space Charge Compensation is a Factor in 750 keV LEBT 

Cockcroft Walton Injectors produce unbunched beams a during 
macropulse
• Microbunching begins ~1/3 way through LEBT
• Significant bunched beam structure only appears within the last 1.8 m of LEBT

LEBT pressure typically mid-10-7 T

SC compensation depends upon location and species
• H+ : max compensation about 10-20%
• H- : almost fully compensated over most of LEBT, 

Accurate estimate of effective peak beam current required for efficient 
tune-up process
• Derived from a comparison of measure beam profile and envelope prediction over 

for beam through drift space with Ieff as a free parameter 
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Beam Matching into the DTL has Issues

Two single-gap bunchers in LEBT produce an incomplete bunch
• Rapidly evolving longitudinal emittance as beam approaches the DTL

Non-constant space charge neutralization in LEBT affects beam 
evolution
• Degree of neutralization depends on location and pulse format

2D TRACE model with scaled-up current works ok
• Higher effective current accounts for bunching
• Does not require knowledge of longitudinal emittance
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“Optimal” DTL RF Set Points are not the Design Values

Original physics tune-up would not produce low-loss, high-power tune
• Phase-scan procedure placed DTL tank fields at design values, which produced a 

high-quality 1 mA beam for additional tuning activities (CCL ∆T)
• However, operating DTL at “design” resulted in unacceptably high losses in CCL 

for high peak current beam, i.e. 16.5 mA
• Significant changes in phase and amplitude required to run high power

Low-loss tune required significant reduction in amplitude set points
• New set points were determined empirically during transition from low to high 

power operation
• One example of high-power DTL tank amplitudes T1@98%, T2@96%, T3@94%, 

T4@98% wrt design, (estimates based upon analysis of phase scan data using 
modified PARMILA code)

• Effect of lowering tank amplitudes is to reduce longitudinal acceptance in DTL and 
removes “tails” early in the acceleration process, i.e. spill at lower rather than 
higher energy
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Transition from Physics Tune to High Power
Following physics tune-up, linac is ready to deliver high-peak, low-
power beam
• Everything done to produce good quality beam with desired average properties
• Tuning now driven by off-energy components and transverse tails

Beam duty factor slowly increased while “machine” is tweaked to 
reduce losses
• Beam losses would limit initial maximum H+ current to ~ few hundred µA
• Combination of longitudinal and transverse issues associated with beam losses in 

TR, along CCL and in beam Switchyard
Tuning to reduce losses aided by 
• Dispersion in Switchyard transports which 

reveal off-momentum components in beam
• Moderate density of beam loss monitors along 

CCL

Reaching full power would take a few days
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Beam Losses and Activation

Largest losses (~20%) are longitudinal in nature and occur in DTL due to 
incomplete bunch formation prior to beam entering Tank 1
Next area in the TR where off-energy and transverse tails spill (~0.1%)
CCL losses are a combination of longitudinal and transverse components 
(<0.1%)
• Transverse mismatch at 100 MeV contributes to higher losses at CCL front end 
• Longitudinal tails and a smaller RF bucket contribute to higher losses near module 13 where 

transverse lattice period doubles
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LINAC Beam Loss Simulations (steady state)

Multiparticle simulations were performed to compare to measured and simulated 
beam emittance and losses in linac
• Equivalent operation: 1 mA H+, 75 μA H-

Simulation began in 750 keV LEBT where input beam was constructed from 
measured transverse and simulated longitudinal distributions
• Space charge neutralization was included

The simulated transverse and longitudinal H+

beam distributions at injection to the DTL.
The simulated transverse and longitudinal H-

beam distributions at injection to the DTL.
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LINAC Beam Loss Simulations in Agreement with Data

Magnet focusing lattice at operational set points in LEBT, DTL, TR & CCL

RF fields
• DTL simulated at operational set points extracted from a comparison of PARMILA simulations of 

phase-scan measurements. 
• CCL at design settings installed by ΔT 

H+ RMS Emittance 

(  cm-mrad) 
H-  RMS Emittance  

(  cm-mrad) Emittance 
Station 

Sim. Meas. Sim. Meas. 
H .93×10-2 .93×10-2 1.9×10-2 1.9×10-2 TDEM1  
V .92×10-2 .92×10-2 2.5×10-2 2.5×10-2 
H 5.2×10-2 3.1×10-2 3.2×10-2 2.8×10-2 TREM1  
V 2.7×10-2 2.8×10-2 5.1×10-2 3.4×10-2 
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H+ Losses H-  Losses Between 
Modules Sim. Meas. Sim. Meas. 

3-12 0.04% 0.1% 0.15% <0.1% 
12-48 0.28% <0.1% 0.24% <0.1% 
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Higher Transient Losses Related to Cavity Field Errors

Time dependence of beam loss in linac shows higher losses during 
beam turn-on transient 

All field errors acceptable, i.e. below the “fast protect” threshold of 1° & 
1% phase and amplitude error, respectively

Present feed-forward signal (scaled version of beam current 
macropulse) not adequate to mitigate error

0

2000
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10000

0 100 200 300 400 500 600 700
time [us]

Typical CCL Loss Monitor signal for high peak H+ beam
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Fast Protect - Machine Protection on a “Fast” Time Scale

Mitigates beam damage to accelerator structure and transports that 
could occur from errant beam that results in excessive spill

Primary inputs
• RF field errors: trips levels at  ± 1°, ± 1%
• beam loss monitors: initial setup based upon ~100 nA of beam spill
• beam current transmission monitors: adjustable set points/tolerances 

Faults are transmitted to chassis which inhibits gating of either LEBT 
deflectors or ion sources

Beam gates are truncated and remain off until fault clears

System response time ~ 10 μs

Fault indications provided via hardware status panels and software 
displays allow for quick analysis of fault type and location
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Summary

LANSCE provides pulsed proton and neutron beams to several user facilities 
whose missions include defense applications, isotope production and research 
in basic and applied science

The linac has a long history of delivering high power beam (800 kW) while 
today’s operation provides more modest levels (130 kW)

Present day operations include ~3000 hours/CY of scheduled beam to user 
programs with typical reliability of 80%

Tuning the linac for high-power beam operation begins with physics/model 
based tuning to get the “rms” performance correct, but then requires empirical 
tuning to address “tails” and minimize spill

Good agreement has been observed between H+ and H- beam emittance and loss 
measurements and the corresponding results from beam dynamics simulations 
which included realistic estimates of LEBT space-charge neutralization, RF field 
levels, magnet strengths and more accurate initial beam distributions
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Additional LANSCE Information for HB2008 WG-D

Measured Performance - Maximum Operating Beam Power
• LANSCE Linac: 1 MW
• PSR-Lujan: 100 kW

Typical residual activation observed on accelerator and beam transports
• Areas not designed for controlled for beam loss: 1-2 mSv/hr @ 1ft (PSR & linac) 
• Areas controlled for beam loss:  10-30 mSv/hr @ 1ft (PSR) 4 hrs after beam off

Average Annual dose for Rad workers
• In 2007, 108 mSv over 116 persons

ALARA principle practiced to minimize dose to workers

Future activitation levels predictable to ~2x based upon historical performance

PSR entries typically require minimum of 4 hours beam off before entries
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