Beam Preparation for Injection to CSNS RCS

J.Y. Tang, G.H. Wei, C. Zhang, J. Qiu, L. Lin, J. Wei

HB2008, Nashville, 2008.08.25~29

Main topics

- RCS injection design and requirements
- LRBT transport line
- Transverse halo collimation by triplets and foil scrapers
- SCOMT code and simulation results
- Momentum spread reduction and momentum tail collimation

RCS Injection Design

CSNS Main Parameters

Phase	I	II	ultimate
Beam power on target [kW]	120	240	500
Beam energy on target [GeV]	1.6	1.6	1.6
Ave. beam current [µA]	76	151	315
Pulse repetition rate [Hz]	25	25	25
Protons per pulse [10 ¹³]	1.9	3.8	7.8
Linac energy [MeV]	80	130	230
Linac type	DTL	DTL	DTL+SCL
Target number	1	1	2
Target material	Tungsten		
Moderators	H ₂ O (300K), CH ₄ (100K), H ₂ (20K)		
Number of spectrometers	5	18	>18

CSNS Layout Scheme

RCS Lattice & Injection

Horizontal

Vertical

Design Criteria for Injection System

- Layout
 - Orbit bumping for facilitating installation of injection devices
 - Minimize proton traversal on stripping foil
 - Weak perturbation to ring lattice
 - Minimize local radiation level
- Phase space painting
 - Better uniform beam distribution to alleviate space charge effect
- Requirement to injection devices
 - Control difficulties of fabrication of the devices (magnets, PS, stripper)
 - Control power consumption

中国散裂中子源

Injection Scheme

From lattice			
	Injection energy (GeV)	0.08/ 0.13	
 In one of dispersion-free long straights (9 m) 	Injection rigidity (Tm)	1.231 / 1.704	
 No residual dispersion Possible due to low injection energy minor perturbation to betatron matching Doublets: double-waist 	Accumulated particles	1.9/3.8 × 10^13	
	Injection time (ms)	0.15~0.30	
	Painting planes	H & V	
 Closed-orbit chicane 	Deinting transverse	200, 250	
 Facilitate installation DC+offset bumpers 	emittance (pi.mm.mrad)	200~250	
	Injection emittance	1.0	
Phase space painting	(pi.mm.mrad, r.m.s.)		
 Keeping both correlated and anti-correlated schemes 	Injection current (mA)	15~35	

Ring bumpers in both horizontal and vertical

RCS Injection Layout

BC1~4: DC Chicane magnets; BH1~4: Horizontal painting magnets; BV1~4: Vertical painting magnets

Main Characteristics of the Injection System

- All bump magnets are in one long drift
 - Possible due to low beam rigidity and long drift (9m)
 - Minimize injection errors due to beam jitter and injection matching (vertical steering)
 - Both correlated and anti-correlated painting
 - BCs, BHs and BVs are powered in series to reduce the field quality requirement and the cost (multipole field self-cancellation as two bumpers are close within each pair)
- Non-stripped H-minus stopped directly by an absorber
 - Maximum 10W at CSNS-II, even lower for thicker foil
 - Almost no H- particles missing the foil with a well defined beam (4~8 pi.mm.mrad)

中国散裂中子源

Injection Strippers

- Two Strippers
 - Main stripper for converting at least
 98% H- beam into H+
 - Alumina or Carbon ~80µg/cm^2
 - Two free sides
 - Surveillance and replacement
 - Auxiliary stripper for converting partially-stripped H0 beam to injection dump
 - Thicker alumina foil 200 µg/cm^2
 - One free side
- Electron collector
 - EP instability
 - Taking use of BC3 fringe field
 - Natural cooling (<18W)

Detailed painting studies

- Using 3D ORBIT simulations including space charge
 - Focusing on: distribution uniformity, emittance blowup and foil traversal
- Different working points
- Correlated and anti-correlated painting schemes
- Linac peak current dependence
- Chopping rate dependence
 - Balance between transverse and longitudinal beam losses
- **RF voltage curve dependence**
- Longitudinal painting (only with momentum offset)

Emittance blowup vs chopping rate

Tune spread at painting end (WP: 5.78/5.86)

Some

Simulation

Results

Emittance blowup vs linac current

Upgrading potential with injection energy of 230 MeV

- Preliminary Injection design for CSNS-II' (500 kW) has been carried out
 - Vertical painting by steering magnets in injection line
- Problems with increased energy of 230 MeV (or 250 MeV)
 - H- Lorentz stripping in LRBT
 - H0 Stark states decay in bumpers

Linac to Ring Beam Transport Line

Main functions of LRBT

- Transfer H- beam from linac to RCS
- Transfer H- beam to linac beam dumps
- Match to transverse requirements at injection foil
- Debuncher to reduce momentum spread
- Transverse halo collimation
- Momentum tail collimation
- Reserved potential for upgrading
- Beam transport for medium energy proton applications

Main Beam Characteristics in the LRBT

Parameters	CSNS-I	CSNS-II	CSNS-II'
Ion species	H-minus	H-minus	H-minus
Beam energy (MeV)	80	130	230
Repetition rate (Hz)	25	25	25
Bunch frequency (MHz)	324	324	324
Gamma	1.085	1.139	1.245
Beta	0.389	0.478	0.596
Beam rigidity (T.m)	1.320	1.704	2.322
Average current (uA)	81	158	328
Peak current (mA)	20	40	50
Beam power (kW)	6.5	20.5	75.5
Emittance (π mm.mrad, r.m.s)	1	1	1
Acceptance (π mm.mrad)	25	25	25
momentum spread (%)	0.05~0.5	0.05~0.5	0.05~0.5

中国散裂中子源

Layout design of LRBT

- Long straight section
 - Basically triplet cells of 60 degrees
 - Reserved space of 85 m for linac upgrading
 - Debunchers in different CSNS phases
 - Transverse halo collimation
 - Transverse matching to both linac and bending sections
- Achromatic bending sections
 - Two achromatic bending sections: symmetric 90° + anti-symmetric 20°
 - Modest dispersion for momentum collimation and resistant to space charge effect
- Two beam dumps
 - Dump-A: low as 200 or 400 W, straight end, for initial linac commissioning and dumping scraped H0
 - Dump-B: large as 6.5 kW, possible for full beam power commissioning, and for dumping scraped protons

Transverse Halo Collimation by Triplets and Foil Scrapers

Transverse Halo Collimation in LRBT

- Purposes
 - To avoid the missing hit of H- on the injection foil
 - To reduce the halo production during phase space painting
 - To reduce the beam losses in the injection magnets
 - To increase the collimation efficiency of the momentum tail
 - Stripped particles can be used for other application experiments while in normal operation

Comparison among different collimation methods

- FODO cells and immediate beam dumps
 - Used by SNS and AUSTRON
 - No need to enlarge Q apertures
 - More collimators and radiation
- Achromat and remote beam bumps
 - Proposed by ESS
 - Expensive with more beam line and dumps
 - Effective for very high beam power
- FODO cells and remote beam dumps
 - Used by J-PARC
 - Cheap with one beam dump
 - Relatively large beam loss

LRBT Collimation Scheme

- Scheme
 - Two triplet cells of 60 $^{\circ}$ in the straight section, three double-waists
 - Three pairs of scrapers (stripping foil) at each waist to make hexagonal emittance cut
 - H+, H0 and H- mixed transport, H+ guided to beam dump after the switch magnet
- Merits
 - No local beam dump or absorber, clean beam line
 - Only one beam dump→low cost
 - H+ transported together with H- without beam loss, no aperture increase to the quadrupoles and the debuncher → low cost
 - As a comparison, FODO or doublet cells have mismatched focusing for protons
 - Allowing deep collimation (about 2%), limiting emittance within 9 π mm.mrad
 - Scraped beam halo can be used for other applications

Beam envelopes of H- and proton beams within one triplet cells

Plots in phase spaceLeft: after first scraperMiddle: at D quad exitRight: at the third waistLower: protons after switch

SCOMT Code and Simulation Results

中国散裂中子源

Simulation code SCOMT

- A new simulation code SCOMT has been developed to deal with beam transfer problems in LRBT
 - No existing codes to tackle the problems concerning the transfer of mixed beams
- Main functions of SCOMT:
 - Macro-particles tracking thru beam line elements
 - With different input distribution options
 - Stripping process with probability when a particle hits a scraper foil (H- to H0, H- to p, H0 to p)

- Multiple scattering is based the Moliere theory with correction
- Nuclear reaction is based on an empirical formulae

Statistical analysis

Linear space charge effect included

中国散裂中子源

Simulation results in LRBT

- Main beam losses in LRBT
 - Multiple scattering: some become large halo
 - Nuclear reaction or large angle elastic scattering: immediate loss
 - Partial stripping (H- to H0), some will lose when hitting a downstream foil
- Optimization of foil thickness
 - Thicker foil: better stripping efficiency, larger scattering
 - Existing optimum foil thickness
- Stability studies
 - With linac beam wobbling, no large variation on current intensity (even for scraped proton beam, <5%)

Momentum Spread Reduction and Momentum Tail Collimation

中国散裂中子源

Debunchers to reduce momentum spread

- To reduce momentum spread
 - At linac exit: about ±0.1%
 - Enhanced by longitudinal space charge
- To correct jitter of average momentum
 - Variation of linac RF phase and voltage
- Foreseen for three phases
 - Higher linac energy → higher voltage, longer drift distance
 - Different cavities due to different β values
 - Different locations
- Detailed study including longitudinal space charge (PARMILA)

Debunchers at difference phases

	CSNS-I	CSNS-II	CSNS-II'
Energy (MeV)	80	130	230
Drift distance (m)	30	40	50
Eff. voltage (kV)	360	550	1050

Momentum Collimation in the LRBT

- Necessity of momentum collimation in LRBT
 - Momentum tail has been observed in many linacs. It might damage the injection devices and increase radioactivity in the region.
 - It is too large (δ>0.005) for the debuncher to correct it.
 - A momentum collimator is used to scrape the tail
- Momentum collimator
 - One stage of momentum collimator is planned at a dispersive location
 - With the bending angle of 45° and long drift, modest dispersion of 5m→cutting all particles with δ>0.005
 - Collimator to absorb particles of energy up to 250MeV

Thanks for your attention!