HB 2008

Future Prospects for Laser Stripping Injection in High Intensity Machines

V. Danilov

SNS, Oak Ridge, TN

Powerful Facilities Motivation (SNS Example)

Ring parameters:

- ~ 1GeV (860-931 MeV in our studies)
- Design intensity 1.4×10¹⁴ protons
- Power on target 1.4 MW at first stage

EDDA BETA NOD (-8

SEE SHEET EA

SEE SHEET ES

IGH BETA NOD 1-3

SEE SHEET ES

 Foils used to get high density beams (non Liouvillian injection)

2 Managed by UT-Battelle for the Department of Energy

ZE SHELLES

DIL-HÉBEXT DIL-HÉBEXT

HIGH BETA NOD 10-13

SEE SHEET E7

AL PELLE

I EETÅ KOD 16-2

STE SHEET EB

SEE SHEET E9

Stripping Foil Limitations

- The SNS will use 300-400 μg/cm² Carbon or Diamond foils
- Two important limitations:
 - Foil Lifetime: tests show rapid degradation of carbon foil lifetime above 2500 K, yet we require lifetime > 100 hours
 - 2. Uncontrolled beam loss: Each proton captured in the ring passes through foil 6-10 times: leads to uncontrolled loss of protons
 - Presently, injection area is the most activated at SNS

Three-Step Stripping Scheme

 Our team developed a novel approach for laser-stripping which uses a three-step method employing a narrowband laser [V. Danilov et. al., Physical Review Special topics – Accelerators and Beams 6, 053501]

Approach that Overcomes the Doppler Broadening

 By intersecting the H⁰ beam with a *diverging* laser beam, a frequency sweep is introduced:

 Estimations for existing SNS laser (10 MW 7 ns) gave 90% efficiency

Laser Stripping Assembly

6 Managed by UT-Battelle for the Department of Energy

Magnets (BINP production) Optics table (1st experiment) 1st experiment – failed 2nd 50% efficiency achieved (v. chamber failure afterwards) 3rd – 85% achieved 4th – 90 % achieved

multiple problems were overcome (e.g., windows broken by powerful laser)

Second States Contract States States

Experimental results

The maximal achieved efficiency: 0.85±0.1 (3rd run) and 0.9 ±0.05 (4th run) Straightforward use is costly – laser power needed is 10 MW*0.06=.6 MW

Laser power reduction – follow-up intermediate experiment

 Matching laser pulse time pattern to ion beam one by using mode-locked laser instead of Q-switched

~ x25 gain

 Using dispersion derivative to eliminate the Doppler broadening due to the energy spread

~ x10 gain

- Recycling laser pulse
 - ~ x10 gain
- Vertical size and horizontal angular spread reduction

~ x2-5 gain

By combining all factors the required average laser power can be reduced to 50 – 120W, which is within reach for modern commercial lasers.

Dispersion function tailoring

15 10.458 14 13 12 11 10 9 8 Dprime(ang(E)) 6 5 4 3 2 2.575 1 0 0.8 0.85 0.9 0.95 1 0.83 E. 1

Introducing dispersion derivative at IP results in ion angle dependence on energy.

For 1 GeV SNS beam D'=2.58 is sufficient for full elimination of Doppler spread

Required dispersion is a very nonlinear function of energy. Higher energy is much preferable.

Fabri-Perot and Inside Crystal Conversion Schemes

Inside Crystal Conversion Flat mirror is transparent to fundamental harmonics and reflects 355 nm light

New experiment place

Experimental assembly to replace HEBT straight section before the last bending magnet

New Choices for New Projects

Why H⁻ atom energy matters?

- Doppler effect gives boost of photon energies can use convenient IR instead of UV
- Magnetic field transforms into electric field in the rest frame of H⁻ beam as βγ- conventional warm magnets can be used for excited states stripping
- Lifetime of the excited states grows as γ it reduces spread of angles in process of stripping
- SNS choice n=3 for 1 GeV only 3rd harmonic of 1064nm can reach the state, n=4 also a choice but needs more laser power
- From 3.23 GeV the 1064 nm light reaches n=2 state in head-on laser-beam interaction – projects with E> 3.5 GeV can use infrared light – LHC upgrade linac (4 GeV) and Project X (8GeV)

LHC 4 GeV linac n=2 excitation

LHC case 4 GeV SNS beam parameters Ppeak=0.5 MW Waist=0.6 mm dE/E=0.6*10⁻³ Rayleigh range=0.46 mm Distance from waist=7cm Excitation efficiency>98%

Q-switch laser 50 ps pulse 300 MHz repetition rate for LHC new booster The average power = 2Hz*50ps*300MHz*0.6 ms*0.5 MW/Qcavity =.01 W Qcavity=1000

Stripping of Excited States

Laser Polarization and Magnets (usual injection)

This distance should be minimized because of excited H⁰ decay Each 1 cm distance for LHC linac equivalent to 1cm/1.6 *10⁻⁹ (lifetime n=2)*5 (gamma)3*10¹⁰ = 0.004 inefficiency The IP shouldn't be in the strong field – Stark broadening suppresses the excitation The ideal case – relative Stark broadening close to relative spread of energies The method of stripping then converges to Yamane's proposed method of stripping

Booster beta-function limitations in this case Emittance increase should be much less then the PS booster emittance $3*10^{-6}/\gamma >> 0.07*10^{-3}/\beta$ - $\beta << 120$ m for injection region

Painting with Laser Stripping (new possibility)

What if β =120 m? Then we don't need injection painting, at least in horizontal plane.

Summary

- Laser stripping POP project was a successful demonstration of stripping physics
- It opened the road to full-scale laser stripping device, follow-up development is underway – one SNS drawback is need for UV light
- The new projects with energies above 4 GeV may realize the stripping device with present technology

