Experience with RCS Injection and Extraction Systems

Inj. And Ext. of the Main ning(MR)
\rightarrow Dr. T. Koseki (this moming)

Pranab SAHA for the RCS of J-PARC August 27, 2008

42nd ICFA

Advanced Beam Dynamics Workshop on High-Intensity, High-Brightness Hadron Beams
(HB2008)
(Nashville, Tennessee, USA. August 25-30, 2008)

Introduction and Outline

Injection is one of the key issues of RCS and has impact on the whole system, where an well extracted beam reflects the overall performance.

In order to mitigate the space-charge effect, the beam density in the transverse plane is controlled by utilizing the painting injection in RCS

- General

Injection system, Extraction System

- Beam commissioning of Injection and Extraction

Comparison with design stage parameters, System performance

- Painting injection study

Reconstruction of the phase space footprint using
(1) BPM pairs with a turn-by-turn mode, (2) Using a tune BPM spectrum

- Beam loss at the injection and Extraction

Comparison with design stage estimation
Near future study concerning beam loss related to injection

J-PARC Facility

Accelerators at J-PARC facility: य 400 MeV (181 MeV at present) LINAC य 3 GeV 25 Hz Rapid Cycling Synchrotron (RCS)

Layout and key parameters

it 50 GeV Main Ring Synchrotron (MR)
Design parameters of RCS

Circumference:
348.333 m

Cell Structure:
(6 DOFO
arc +
3 DOFO
insertion) $\times 3$
Nominal tune:
6.27)

Natural chromaticity: (-8.5, -8.8)
 GeV(*) Output Goal: $0.3 \sim 0.6$ MW (othertrelated mumbenssare also thus different) GeV

RCS Injection and Extraction Systems

Inj. - HO dump line components

Magnets:

Shift bump: 4 (SB1~4)
Hori. Paint bump: 4(PB1~4)
Vert. Paint Bump: 2 (VPB1~2)
Septum:4(ISEP1~2, DSEP1~2)
DC Str. magnets: 6
Inj. 4(2H, 2V), Dump 2(1H, 1V)
Pulse Str. magnets: 2 (PSTR1~2)
Quad: 3 (QFL, QDL, Dump-Q)
Monitors:
MMPM (Multi-wire Profile Monitor):7(6) BPM (Beam position monitor): 4 (2) K-BPM, I-BPM (Big-BPM1,2)

1st Foil , 2nd Foil, 3rd Foil, etc..

Injection beam control @foil

$$
\begin{gathered}
X \rightarrow \text { w/ Isep or SB } \\
X \rightarrow \text { w/ Isep } \\
Y, Y \rightarrow \text { Inj. STR }
\end{gathered}
$$

Monitors: MMPM 3,4(5)
Both beam profile as well as the beam position can be measured by the MMPMs

> Ext. area components: DC kickers: 2 (KICK-A,B) Pulse Kickers: 8 (KICK-A1-3, KICK-B1-5) QUAD: 2 (QR, QDL)
> Septum: 3 (SEP1~3)
> Monitors: BPM: 2 (in the ring)

BLM $\times 4$ Carbon Plate (thermqmete)

MWPM

Injection - HO dump line

Injection scheme in RCS

Beam commissioning of Injection and Extraction

Linac Energy: 181MeV Peak current: 5mA

* Run\#9 data

Inj.-HO dump line orbit looking from RCS central orbit

| | IBPM | MMPM2 | BigBpm1 | MMPM3 | MMPM4 | MMPM5 | BigBpm2 | MMPM6 MMPM7 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| Cal: | 418.6 | 226.0 | 214.7 | 133.7 | $\mathbf{8 7 . 7 0}$ | 132.2 | 213.5 | 481.0 | 3416 |
| Meas: | 412.0 | 228.8 | 214.0^{\star} | 133.4 | 87.70 | 132.3 | 219.0^{\star} | 491.1 | 3435 |

Comparison of Magnet Parameters (K0)			
	Cal(mrad)	Used(mrad)	Diff(\%)
ISEP1	107.0	110.0	$\mathbf{+ 2 . 8}$
ISEP2	160.4	173.8	$\mathbf{+ 8 . 3 5}$
DSEP1	146.4	144.0	-1.66
DSEP2	311.4	317.4	$\mathbf{+ 1 . 9 3}$

Measured response matrix near the present orbit was exactly similar with the model cal
\rightarrow Efficiently used for the beam commissioning in both the center and paint injection.

Present center inj orbit is very much different than the design painting orbit, while 2 Pulse STR magnets in addition to septum using in the design stage are not available. The beam orbit passes very off-center through ISEP2, where no field measurement through this orbit couldn't reach \rightarrow May be the main reason!!
w/ paint orbit (100p), the difference becomes: $+5.3 \%$ \rightarrow Gets better but not sufficient \rightarrow under study

Concerning extraction, no sufficient data but the overall agreement is satisfactory

Unlike, injection area, there are lack of monitors in the extraction section

Stability of the injection and extraction beam (system performance)

Inj. Beam jitter@ last few BPMs in the L3BT line

In RCS, the fluctuation of the Shift bump flat top was within $\pm 1 \%$ while all other DC magnets both in the injection and the extraction line were just stable!

Stability of the ext. kicker magnets: $\sim 0.2 \%$
$\rightarrow \mathrm{Dx}-0.1 \mathrm{~mm}$ at the exit of ext. septum \rightarrow negligible

Finally, the ext. orbit stability was measured as follows:

Painting injection study: Run\#16, 17

Painting process in RCS : schematic view

Painting injection major study items:

1. Horizontal Painting for $100 \pi, 150 \pi$ and 200π painting area.
2. Vertical Painting for 100π painting area [both with i) constant flat top and ii) with decay pattern]
3. Horizontal and vertical together for 100π with decay pattern

Beam conditions
Linac peak current: 30mA One intermediate pulse inj
RCS DC circulating mode
RF chopping: 560ns

Painting injection study: Run\#16, 17

The top of the paint bump first fixed with a constant pattern by measuring directly the phase space coordinates at the foil using MMPM 3\&4

The decay pattern was then made using following functions:
Hori: $I_{\max }[1-\operatorname{Sqrt}(t / T)]$
Vert: $I_{\max }[$ Sqrt(t/T)]
Pattern for 150π and 200π were scaled from 100π and was perfect !!

Schematic view for study with decay pattern

Hori. paint bump pattern@constant flat top inj(i)

Hori. paint bump @ decay pattern(ii) Pattern moved t0-t5 w/ 100μ s step

Vert. paint bump @ decay pattern(ii)
Pattern moved t0-t5 w/ 100μ s step

Painting injection study cont'd

Method: 1

BPM with single pass mode

Using tum-by-turn data of BPM pair

Two BPM pairs in drift space 1st pair: BPM id \# 1101 and 1102 2nd pair: BPM id \# 1902 \&2001

X_BPM and X': phase space coordinate of the beam center measured with BPM pair after subtracting COD M^{n} is the one turn transfer matrix M is the transfer matrix from foil to the BPM $X _$foil and X^{\prime} _foil : reconstructed phase space coordinate at the foil

Method: 2

Using spectrum of a Tune BPM

measuring a betatron response matrix and by detecting the real and imaginary part of the betatron sideband peak gives the phase space coordinates at the injection point
(Detail : H. Harada, to be published in Ph.D. thesis)

$R\left(\omega_{x}\right)=$ Measured Response matrix

$$
=\left[\begin{array}{ll}
A(r e a l) & B(r e a l) \\
A(i m a g) & B(i m a g)
\end{array}\right]
$$

$\operatorname{Re}\left[X_{e}\left(w_{x}\right)\right]$ and $\operatorname{Im}\left[X_{e}\left(w_{x}\right)\right]$: Real and imaginary part of the betatron sideband peak
' x_{e} and x_{e} : reconstructed phase space coordinate at the foil

Checking of both methods first

(matching of the injection and the closed orbit)

Then, starting with 100π painting, at first balance of 4 horizontal paint bump magnets were adjusted by measuring and correcting the COD during the paint bump on(0-1msec). Parameters for 150π and 200π were then just scaled.

Vertical direction: \rightarrow By measuring directly Y and Y of the inj beam at the foil with MMPMB,4

Measured Twiss parameters @ foil

Inj. Beam: Circulating beam
$\alpha x=-0.3302$
$\alpha y=-0.23088$
$\alpha x=1.7144$
$\beta x=3.2207 \mathrm{~m}$
$\alpha y=-1.8712$
$\beta y=4.8071 \mathrm{~m}$
$\beta x=12.9575 \mathrm{~m}$
$\beta y=12.3682 \mathrm{~m}$
$\varepsilon x, \varepsilon y \approx 3.5 \pi . \mathrm{mm} . \mathrm{mrad}(3 \sigma)$
$X^{\prime}(m r a d)$
For 100 r.mmmrad painting

Normalized phase space plot of the beam center measured by BPM turn-by-turn data

Painting study results

 with constant paint loump pattern

Footprint with Horizontal paint bump

Hori. paint bump @ decay pattern Pattern moved t0-t5 w/ $100 \mu \mathrm{~s}$ step

- Target
- Single pass BPM 1101 pair
- Single pass BPM 1902 pair
\triangle PB magnet off at t5 (1101 pair)
\triangle PB magnet off at t5 (1902 pair)
\square Measured by MMPM3-4

decay pattern

Well reconstructed the phase space Footprint by the BPM single data.

At $t=t 5$, the pattern was a bit strange and was confirmed by the measurement with PB off at $t=t 5$.

Gets little disagreement with larger amplitudes \rightarrow Under Inspection !!

Footprint with vertical decay pattern(100π) Horizontal and vertical together(100 π)

Vert. paint bump @ decay pattern
Pattern moved t0-t5 w/ 100μ s step
In the vertical plane, only with 100π painting study was performed. Reconstructed footprint in the vertical plane found a bit zigzag but finally gets to the expected position.

A correlated painting studly vith 100π was also performed and the reconstructed results were expected

Basic painting study in Run\#16 was done very successfully. BPM with single pass mode was found to very effective and accurate.
Basic painting study in Run\#16 wa
BPM with single pass mode was fo
(Detail with method 2 under analysis)
Paint bump patterns made in this study was used for the painting with high power run

- Single pass BPM 1101 pair
- Single pass BPM 1902 pair
\square Measured by MMPMB-4

Beam loss @ Injection and Extraction areas

Residual level measured after Run\#14
(w/ high current operation)
Run ended: 2/25, 3:55

Injection branch Mainly because of the present center inj orbit Very close to the aperture limit!!

Extraction wide area

Clean !!

Losses in the arc sections
\rightarrow During RF study

HO dump branch Not understood yet clearly !!
H0? (if 2nd foil not working well!)
Long tail of the inj. Beam + scattered? (beam loss signal even in the $1 / 3$ mode!)

Foil system broken \rightarrow no study done so far
\rightarrow To be done in the next run (foil system recovered)

Beam loss in the RCS injection area (Estimation vs. reality)

Major sources and quantity of the beam loss in the injection area:
(Considering inj beam power of 18 kW [0.3NW@RCS extraction])

1. Lorentz striping loss of the injection(H) beam: $\ll 1$ W

$$
\rightarrow \text { Inj beam line clean!! }
$$

2. HO excited states losses: < 2W
\rightarrow 1st foil to the bump region clean!!
3. Nuclear scattering together with multiple coulomb scattering at the charge-exchange foil:
\rightarrow Major source among all
Total loss: 38W($-0.2 \%)$
P.K. Saha, PAC07 (GEANT + SIMPSONS)

Simulation with Real painting process (Space charge: off) Foil size: $32 \mathrm{~mm} \times 36 \mathrm{~mm}$ (design) and with ideal bump systems
Average foil hits:

Mostly may be due to the 3rd source:
Average foil hit vith present foil and bump systems: -200
$\rightarrow 8$ times higher than the design
\rightarrow Checked with simulation
$\theta_{\text {rms }}$ (hand cal) $=-1 \mathrm{mrad}$! \rightarrow large !!
Detail study to separate foil scattering loss vith recovered foil and systems to be done in the next run

Summary and future plan

The injection and extraction systems of RCS are found to be performed well during the beam commissioning so far.

Except one case, design stage parameters are found to be consistent with the beam commissioning parameters, where the relative values were exactly similar each other
\rightarrow Beam commissioning proceeded quite smoothly for any operation

Painting study utilizing one intermediate pulse injection was successfully performed by measuring accurately the phase space footprint.. \rightarrow Phase space control can be done in the painting inj.

Estimation of the beam loss in the design stage was found to be consistent. Detail study with nuclear scattering loss is planned to perform in the next run.

Discussion on several questions by the committee

Does the system perform as expected?
Ans: System performance satisfactory so far! No remarkable trouble concerning inj and ext. Bump system working fine. Problem remains with Bump falling time and hope soon gets better. Foil systemgets recovered

Did the simulations/calculations performed during the design stage accurately predict the actual performance?
Ans: Yes. Inj and ext. beam orbit even with very different parameters goes through expectation.
The beam profiles are also quite similar.
The relative parameters of all magnets are exactly similar to the simulation/calculation.
Needs more experimental data

What are the major limitations in performance? Were they known in the design stage?
Ans: Foil system was one big limitation of the injection commissioning. But it's going to be fine from the next run.
So far not face any other big limitation and would be clear with long time (and high power) operation.
No BPM in the extraction section is one small limitation concerning extraction.

> If someone were to begin now designing the same type of system for a similar machine, what is the one piece of advice that you would give them?

Ans: Please try to have enough monitors, especially in the complicated areas like injection and extraction.
Keep (check for) enough space for not to push nearby magnets/elements nor make thinner the shield at the last moment to install later elements/magnets

Backup Slide 1 Results with constant flat top cont'd (for $150 \pi, 200 \pi$ painting)

150π Target:
$\Delta x=-39.86 \mathrm{~mm}$
$\Delta x^{\prime}=5.65 \mathrm{mrad}$

Result from single pass BPM 1101 pair: -35.1 mm, 5.83 mrad
1902 pair: -36.6 mm, 5.92 mrad
Measuring with MWPM3,4

$$
\Delta x=-39.30 \mathrm{~mm}
$$

$$
\Delta \mathrm{x}^{\prime}=5.92 \mathrm{mrad}
$$

w/ inj beam 150π paint orbit but PB off: 1101 pair: $37.2 \mathrm{~mm},-6.13 \mathrm{mrad}$ 1902 pair: $36.3 \mathrm{~mm},-5.90 \mathrm{mrad}$

$$
\begin{gathered}
200 \pi \text { Target: } \\
\Delta x=-47.02 \mathrm{~mm} \\
\Delta x^{\prime}=6.67 \mathrm{mrad}
\end{gathered}
$$

Result from single pass BPM 1101 pair: - $42.5 \mathrm{~mm}, 6.85 \mathrm{mrad}$ 1902 pair: -42.8 mm, 6.81 mrad

Measuring with MWPM3,4

$$
\begin{aligned}
\Delta \mathrm{x} & =-48.05 \mathrm{~mm} \\
\Delta \mathrm{x}^{\prime} & =7.076 \mathrm{mrad}
\end{aligned}
$$

Not measured w/
inj beam 200π paint orbit but PB off

Backup Slide 2
 Bump pattern@paint inj study

Backup Slide 3

Measured beam profile by MWPM

The mean and the width of the measured profiles in the U and V planes were transformed to the X and Y plane as follows:

$$
\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \begin{gathered}
\theta \text { is the wire inclination: } \\
17.7 \text { deg. }
\end{gathered}\left[\begin{array}{l}
\sigma^{2} u \\
\sigma^{2} v
\end{array}\right]=\left[\begin{array}{cc}
\cos ^{2} \theta & \sin ^{2} \theta \\
\sin ^{2} \theta & \cos ^{2} \theta
\end{array}\right]\left[\begin{array}{l}
\sigma^{2} x \\
\sigma^{2} y
\end{array}\right]
$$

$\substack{\text { Backup } \\ \text { Sinide } 4}$ Ext. Kickers flat top measurement

\square Required flatness $=2 \%$ in the time length of 840 nsec
\square The trigger timing of the each kicker was adjusted in order to cancel out the peaks and troughs of the flattop.

■The flatness of 2% was achieved in the time length of 850 nsec!

