BEAM STUDIES AT THE SNS LINAC

42nd ICFA, HB2008, Nashville, USA, August 25-29, 2008

Outline

- Introduction to the SNS Linac
- > Longitudinal Beam Dynamics Studies
- > Transverse Beam Dynamics Studies
- Unsolved Puzzles
- Summary

The SNS Linac

□ Length ~260 m, 96 independently phased RF cavity/tanks

- □ Normal conducting linac from the H⁻ ion source to 186 MeV
- □ Superconducting linac from 186 MeV to 1 GeV
- □ Beam commissioning of the SCL began in August 2005

❑ Achieved the design repetition rate 60 Hz, maximum beam energy 1.01 GeV, peak beam current 40 mA, pulse length 1 ms, beam power on the mercury target 520 kW.

Longitudinal Lattice

RMS phase in the warm linac, linear map and zero current

Y. Zhang, S. Henderson, this proceedings.

Phase oscillation in one of the SCL commissioning lattice

Longitudinal beam emittance increase in the SCL commissioning lattice

for the Department of Energy

Presentation_name

Beam phase oscillation and damping are sensitive to RF errors

SCL phase oscillation measured in February 2006

First cavity gradient 10% & 15% reduction, model & measurement

A. V. Aleksandrov, et. al., EPAC2008

RF Shaker, warm linac model prediction and BPM measurement

phase, ~2% amplitude) and likely caused by RF driftings

Longitudinal Beam Emittance Measurement

A. V. Feschenko, et. al., PAC2007

Beam phase profile measured with a BSM in CCL1

Y. Zhang, et. al., submitted to PRST-AB

for the Department of Energy

Presentation_name

for the Department of Energy

Transverse Beam Dynamics

Beam emittance and twiss parameter measurement at MEBT

Multiple wire scans measure beam profiles, and fit the measured beam RMS size with the accelerator models

•On-line model in the XAL is based on TRACE3D.

•Transverse – longitudinal phase space coupling.

•Higher order effects: emittance growth in RF gaps, chromatic aberrations in "short" quadrupoles.

Presentation name

Y. Zhang, J. Qiang, this proceedings

MEBT beam parameter measurement using the IMPACT model

for the Department of Energy

A. Shishlo, A. V. Aleksandrov, EPAC2008

for the Department of Energy

Unsolved Puzzles

Linac residual activations after neutron productions

SCL Longitudinal Acceptance and ...

Longitudinal emittance in the warm linac

The nc. linac could be a halo filter (scrapper) if no error existed

RFQ Beam Tails plus Linac RF Errors ?

Beam loss in the linac, No Error, RF Error, MEBT RBs gradients

Beam Loss In the SNS Linac (500 kW)

25 Managed by UT-Battelle for the Department of Energy 212

National Laboratory

Partially chopped beams ?

CCL1 BPM amplitude and phase measurement for 4 mini-pulse

Increase the SCL acceptance ?

Presentation_name

for the Department of Energy

Summary

- Beam dynamics studies at the SNS linac are performed with several conventional and newly developed techniques.
- Beam longitudinal tails/halo shown in the measurements, but the exact cause of the longitudinal halo is not fully understood.
- Simulation study of halo in the linac does not have a complete picture, might need 3D particle tracking from the ion source.
- Characterize beam halo in the order of 10⁻⁵ to 10⁻⁴ and reduce the fractional beam loss to below 10⁻⁴ in the SCL is a challenge, existing problems should be fixed first. E.g., MEBT rebuncher, LEBT and MEBT beam chopper, performance of the RFQ, and transverse beam matching through the entire linac correctly...
- Beam loss in the linac especially in the SC linac is one of the major concerns to further ramp up the beam power, a factor of two to three beam loss reduction is needed. Suggestions and ideas are welcome.

