PHASE DAMPING IN THE SNS LINAC

Yan Zhang

42nd ICFA, HB2008, Nashville, USA, August 25-29, 2008

for the Department of Energy

Phase damping measurement with linac BPMs

Shift DTL1 phase by +10° and -10°, measure the responses of all BPMs

Presentation_name

Measured in Feb. 2006

Phase centroid oscillation in the baseline SCL

SCL longitudinal model, thin lens approximation and absolute phase Small acceleration not appropriate, cavity TTF varies widely, roughly

Cell Phase and Cavity Phase of the SCL

Cell phase varies > 100° in the baseline SCL, but a smooth longitudinal focusing can still be estiblished by the average. In operations, cavity gradient is scattered from 0 to 180% that of the nominal design value, smooth focusing is important. ⁵ Managed by UT-Battelle for the Department of Energy

Phase oscillations in one of the SCL commissioning lattices: instead of damping, the oscillation amplitude increased at the beginning half because fixed phase rule is applied, but cavity gradient doesn't favor

Presentation_name

Longitudinal beam emittance increase in the SCL commissioning lattice

Phase oscillation in recent neutron productions

Fixed phase and fixed focusing, both will work, and longitudinal emittance dilution could be expected at the end - not a concern.

Normalized beam emittances in the simulations with IMPACT, longitudinal emittance increased at the end as been expected

9 Managed by UT-Battelle for the Department of Energy

Presentation_name

Beam phase oscillation and damping are sensitive to RF errors for low or medium energy proton and heavy ion beams – diagnostics !

SCL phase oscillation measured in February 2006

First cavity gradient 10% & 15% reduction, model & measurement

11 Managed by UT-Battelle for the Department of Energy

Presentation_name

One of the Feb. 2006 measurements

Major error: RF drifting in the linac, measured beam phase drifting up to 5^e

One more in Feb. 2006

A. V. Aleksandrov, et. al., EPAC2008

RF Shaker, the warm linac delta-t model and BPM measurements Helped to tune the linac more precisely, and tackled RF failures.

But only a few hours later ...

RF drifting is always in the linac, including the SCL tuning process beam phase drifting of ~2° and beam energy ~0.4 MeV into the SCL

Recent SCL measurements using the RF shaker

SCL RF Cavity Phase Scaling

Presentation_name

for the Department of Energy

Most recent SCL measurements

SCL was tuned on Aug.14, RF shaker measurements on Aug.16 and Aug.19 linac LLRF system was touched on Aug.18 (Cav8c at 43m - phase changed)