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Introduction

« ISIS Spallation Neutron Source ~0.2 MW S
- Commissioning Second Target Station

- Now ramping up operational intensity "

- ISIS Megawatt Upgrade Studies started “ W £

« Will summarise our programme of Ring High Intensity R&D
- Underpins the work above (& has wider applications)
- Aim to understand intensity limits of present and upgraded machines
- Experimentally verify simulation and theory on ISIS where possible

- Broad: covers diagnostics, experiments, simulation, theory
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The ISIS Synchrotron

Circumference | 163 m
Energy Range | 70-800 MeV
o7 Dol Fdd = Tme , Rep. Rate o0 Hz

06 /i\Emcﬁon Intensity 2.5x10"% — ~ 3.0x10"3 protons per pulse
£ 0 Mean Power 160 — ~ 200 kW
£ o > 5 tolerion | | | osses Mean Lost Power ~ 1.6 kW (<100 MeV)
03 > Trapping Inj: 2% (70 MeV) Trap: 5% (<100 MeV)
N Inject‘ion Acceleration/Extraction: 0.1 — 0.01%
e Injection 130 turn, charge-exchange

paint injected beam of ~ 25 T mm mr

Acceptances horizontal: 540 = mm mr with dp/p = 0.6%
vertical: 430 1 mm mr

eam Intensity ppp x 1e13|

IN)

Beam Intensity ppp x 1€13 / Beam Loss

)1 RF System h=2, f.=1.3-3.1 MHz, peak V=140 kV/turn
I\, h=4, f, =2.6-6.2 MHz, peak V=80 kV/turn
O A \ Extraction Single Turn, Vertical

Time (me) Tunes Q,=4.31, Q,=3.83 (variable with trim quads)




& e & Technology Facilities Council

1. Profile Monitor Studies ~ 1

Introduction Rob Williamson, Ben Pine, Steve Payne
- Profile measurements essential for space charge study -A-ﬂﬂm'-

- This work: Modelling & experiments to determine accuracy
- Overlaps with diagnostics R&D work - S J Payne et al

« Residual gas ionisation monitors
- Detect positive ions in 30-60 kV drift field

I -
U

_ Potential from CST
« Two main sources of error: P(x,y) DETECTOR APERTURE ConrrNsaTING

(1) - Drift Field Non-Linearities

D(y,z
 Modelled dynamics of ions with v ;
- CST Studio™ for fields F ~E

- “In house” particle trackers Aﬁ

(2) - Beam Space Charge

ELECTRODE




& Science & Technology Facilities Council

1. Profile Monitor Studies ~ 2
Drift Field Error Rob Williamson, Ben Pine

2D Tracking Study

m oy o= E0mm

K] T

¥ = B B B B %

- Field error distorts trajectories

- Measured position x;=F(x,,ys)

For given geometry find: Particle «
Trajectory \ X,

- Averaged scaling correction o -

3 D TraCk| ng Study Blue: Trajectory of particles entering detector R
M I t d . 3D = ‘ Red: Origin of particles entering detector A

- More complicated in case & S
Longltudlnal fleldS new effects é - Black: Transverse section of beam at given z B

10

- Detected ions from many points

- Scaling corrections still work

- Ideas for modifications

Trajectories as a function of z along beam
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1. Profile Monitor Studies ~ 3
Space Charge Error Rob Williamson, Ben Pine, Steve Payne

Space charge field distorts trajectories

[ Aorizontal (Blue) Lha'\ie'ré-.éafdﬂ'e'd')'F'-r'o'f-.]e_'dkdn'nitb'r'D'q‘ta' T _
lon Trajectories (2D) Simole calculation: i | —
imple calculation: || Width vs V"
] trajectory deflection ||= ™
/ s [ .y Measurement
11| /I Axec AEse) o ; e ]
|(Eg Yincreasing = |-LiAL) <Ed> V, PENEEEPSSEL A .
Profile widths parabolic simulation ‘ ;—-M=='*—'— i " " 4
[~ Theory = Simulations _Experimental data| . L
T 90% Width vs V,
-§ 151 5 ‘ ' ' Voltage / k- ' ‘
i Sim & Meas & Theory
gz: ‘ ‘ ; : ” (R=47) (R-40) ( ;3) 1
* e E\e‘::fr.(;devullazz(l]kv e e S J Payne 400? /i///// -
* Increase in given percentage width ocV,* E
AW, =k, V. ———
S k vs Width
«Also Kk, cW,,, -for “normal” distributions P Sim (3D) & Meas

60
Percentoge Width Token / %

» So can correct a profile for space charge

« Confirmed experimentally & in 2D/3D simulations
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Summary

1. Profile Monitor Studies ~ 4
Rob Williamson, Ben Pine

» Good understanding of monitors

- Correction scheme: good to £3 mm
» Experimental verification

- Many checks and agrees well

- Final checks needed: EPB monitor
» Monitor Developments (S J Payne)

- Multi-channel, calibration, etc

- Drift field increase and optimisation
« Seems to work well

- See next section ...

Basic correction scheme
- drift field and space charge

- for near-centred, “normal” beams

_ Ksc PY
W, , = KpW, , +
D
3D simulation:
original, “measured” SRR T
. Ideal Profile 90% Width = 69.870003 mm ]
and Corrected prOﬂIe (fii:rrec:lc-z(: Profile 90% Width = 78.029995 mm
p
> /fﬂi angular acceptance ||
2 // \ of detector, reduces ||
S 1000} \ errors to £ 3 mm
; ‘-"‘::/‘ \\
& i \
= 500 P ":1}.‘ ~ ,
/ \
/ I\
oL e AR N =
-1 ~100 ~50 50 100
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2. Injection Painting ~ 1
Bryan Jones, Dean Adams

Injection Studies: Aims and Background

- Studies of injection important for:

- ISIS operations and optimisation

- ISIS Megawatt Upgrade Studies

- Space charge studies

« Want optimal painting

- Minimal loss from space charge, foil

« Start is Modelling-Measuring ISIS

Dispersive Closed Orbit ,
A

<
<

C N

Vertical Sweep Amplitude

X'}

y

* ISIS Injection

- 70 MeV H- injected beam: 130 turns
- 0.25 ym Al,O4stripping foil

- Four-dipole horizontal injection bump
- Horizontal: falling B[t] moves orbit

- Vertical: steering magnet
Injection Closed Orbit

/ Dipoles
;_
" Dispersive

\ Closed Orbit

K Injection Septum Foll Injected
Beam

Vertical Sweeper
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2. Injection Painting ~ 2

Injection Painting Measurements Bryan Jones, Dean Adams

- Direct measurement of painting « Profiles measured on RGI| monitors

- Use “chopped” beams - Corrections as described above

- Low intensity (1E11 ppp); less than 1 turn

 Plus other data ...

- Inject chopped pulse at different times - Injected beam, sweeper currents, ...

- Least squares fit to turn by turn positions

e - o< R s

1]

zZ, = Aexp{— (&ggﬁ)}cosk} +2m(Q, +nAQ)|+nAzZ,, + 7,

« Compare Measurement-Simulation

- Extract initial centroid betatron amplitude || - Normal anti-correlated case

- Trial correlated case

+——>
200 ps Injection period

£l T \ ... |]-Change vertical sweeper to switch
g D2 || - Reverse current vs time function
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2. Injection Painting ~ 3

Bryan Jones, Dean Adams
Simulation and Measurement: Normal Painting

Horizontal Profile Vertical Profile Painting
2.5x10'2 ppp 2.5x10'3 ppp 2 5x] 012 PPP  2.5x10'3 ppp anti-correlated

o == -0,.3MSs | = -0.3mS — e (), 3ms — === _0.3ms

Vertical

[ Ity (Arb)
[ Ity (Arb)
Infensity Arb}

=
=
g
£

=
=

Intensity {Arb)
Intenslty (Ar}

sz -0.1ms e Olms — O]ms

Intensity {Arb)
Intensity (Ark}
Intensity Arbh

| Not the final iteration, but
pretty good agreement

(mm)

Key Measured (corrected) S/mu/at/on (ORBIT)
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— ISIS
2. Injection Painting ~ 4

Bryan Jones, Dean Adams
Simulation and Measurement: Painting Experiment

Anti-correlated Correlated Painting
Vertical Profile Vertical Profile
2 5x10"2ppp 2.5x10'3 ppp 2.5x10"2 ppp 2.5x10'3 ppp | Vertical - correlated
| ——mze--0.3mMS '_ —ume-(), 3ms —— e -0.3Mms | —— s -0, 3ms e

§

it At Closad O i

oL saas r=— oz o=

o ’ Vertical - anti-correlated
— s -(). st ——— e g -O_st

.H‘Hu

Yo it i

-

* Follows expectations ... [ran at 50 Hz OK’]

.| * Plan to develop and extend to study
- other painting functions: optimal distributions
- emittance growth (during & after injection)

- foil hits & related losses

Y (mm)

Key - Measured (corrected) - S/mulat/on (ORBIT)
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3. Machine Modelling ~ 1
Dean Adams, Bryan Jones

Injection Simulation Details

- ORBIT multi-turn injection model
- Painting: H - Dispersive orbit movement; V - Sweeper Magnet
- Injection bump, momentum spread and initial bunching

- 2D transverse (with space charge)

- 1D longitudinal (no space charge yet) xx) (y)
xX,x) (Vy

(x.y) (dE, phi)

Example: Normal anti-correlated case 2.5E13 ppp

s sl sle 2les sl g

il | T | 11 O 1 s ' R il . e
Turn 9 Turn 39 Turn 69 Turn 99 Turn 129

ORBIT
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3. Machine Modelling ~ 2
Dean Adams

Longitudinal Studies ~ work in progress

- TRACK1D - works well - basis of DHRF upgrade (C R Prior)

- Now working to model in detail in ORBIT (1D then 2.5D)

- Collaborating on tomography (S Hancock, M Lindroos, CERN)

Comparisons and trials at 0.5 ms after field T by trial
minimum on ISIS for ~ 2.5x1073 ppp omograpny trats

TRACK1D ORBIT 1D

(real data!)
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3. Machine Modelling ~ 3

Dean Adams
Full Machine Modelling in ORBIT ~ work in progress

 Simulation of full machine cycle 2.5D — some reasonable results

- time variation of loss _
Loss vs Time
— reproduces main loss 0 - 3 ms soo . .
» Collimators now included i Simulation
E 300_'— —
~ space variation of loss T ]
. Q. O é
— good results (normal ops & Mice target) = _
O VO [(— _:
ZogC [T T \l
s Spatial Loss i )
- X
& @©
LEEL 10C0C — — %
E B i
B N
1|3 -
| =
Dc:l Y -“—L;lo_hl ST e T 'slol RN L = L = = .
= * some energy dependence
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4. Half Integer Losses ~ 1
Chris Warsop

Qy
4

Importance for the ISIS RCS

» Transverse space charge - key loss mechanism

39 - ,,,,,,,,,,,,,;‘ 1mg
- Peaks at ~0.5 ms during bunching AQ,,.~-0.4 W

- In RCS is 3D problem: initially study simpler 2D case
* First step: envelope equation calculations v

3.8 3.9 4 41 42 43 44 45

- ISIS large tune split case: independent h and v (Q,,Q,)=(4.31,3.83)

- Get 8/5 “coherent advantage” (e.g. Baartman) v _avmzs ok o o D

- Numerical solutions confirm behaviour e,
1D Envelope 2D . Envelope :

Amplitude —.drequency Amplitude Frequency g

e : * i g e T
) 12 2.5 il T — -~ R—FRound, Big Q Split

07 1 N 2 @ 15 P T | G-Rouna, G Spiit

o oo. Horizontal - g e B-ren ozt

mmmmmmm o 05 2 7.5 ".._\-.H___’ | | s-oRBIT EquivBeam
;_memmmmm 20 4 @ 8 1o 10 T 7 s e ;;: ~-.._‘____t‘_“h-. [

6 8 9
6
[ 4
0s y
025 2 20
i 1.2
mmmmmmm 6 7 1 5
y

8 5" ...-H""-a.__
- oe 3 o 67 by . . . R N I )
) Y >t Vertical . 0 0.1 0.2 0.3 0.4 0.5 0.6
o 0.2 fie=s
0.5 i
05 20 4 © 8 10 120 6 7 8 9
J 6 7 8 9 f

20 4 @ @ 10 120

Increase intensity

<«

B
B B 8 &
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4. Half Integer Losses ~2
Chris Warsop

ORBIT 2D Simulation Results

- 5E4 macro particles; ~RMS matched waterbag beam

- Tracked for 100 turns; driven 2Q =7 term Turn 100

(x,x) (v,y)

Envelope Frequencies Incoherent Q’s Envelopes (X.,.y) (£x.€,)
Horizontal Vertica T .

e e T I ' ‘ .. , ..
i1 Juy — et A
i — LS
o 7
F LA
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ISIS

ORBIT 2D Simulation Results
- Repeat similar simulations, but driven by representative 2Q,=8 & 2Q =7 terms

4. Half Integer Losses ~3
Chris Warsop

- If allow for BF and energy is compatible with loss observation on ISIS

Env Osc/Turn

Incoh Osc/Turn

RMS Emittance (pi mm mr)

Coherent Envelope Frequency

9 T T T T
: Col“\erent LFmit :
85T 7T N
gL __ L T
75— r—— . - e e e
7 I I I I I I I |
0 1 2 3 4 5 6 7 8 9 10

140 -
120 -

100

D @
o O

1 1 [ | | I :
o i iR St el el o g
Horllzontal : : : Emitt‘ance Gl"OWlh : H
= Vertical R e e e e [t
T T i | I S i
Agk‘b,ﬁ
| | | | : | | [ | :
| [ * H
i i iy it Bl Sy St fer ) i [ttt el
| : 12ttt |
— [ S s 4 ‘
1 2 3 4 5 6 7 8 9 10

Circulating Protons (x1E13)

Driven both planes
2Q,=8 & 2Q =7

Questions important for real machines ...

« What causes ¢,,,. growth?
Mis-match, non stationary distributions,

driving terms from lattice, ... ?
« Can we minimise it?
* Do codes give good predictions?

- can they predict emittance growth & loss?

Have compared ORBIT with theory

- to see if behaviour follows models
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4. Half Integer Losses ~ 4

Study of Halo & Future Work Chris Warsop

> Vertical (Yy, Yy)
Simulation Theory [*]

« Comparison of halo structure with theory

- ORBIT: Poincare routines: AG ISIS Lattice; RMS

Matched WB; quad driving term; large tune spilit;

- Theoretical model: Smooth, RMS equivalent KV, g

quad driving term; “small tune split” (equal) S

[*Venturini & Gluckstern PRST-AB V3 p034203,2000] E

. (@))]

- Main features agree ... Normalised =
vertical s

. Next phase spage | E

- Check number of particles migrating into halo ...? \ 4

- Introduce momentum spread (then extend to 3D)
7.00 x10'3 ppp 7.25 x10'3 ppp
] ) ] ) 8.00 x10'3 ppp 7.50 x10'3 ppp
- Comparison with ISIS in Storage ring mode 8.50 x10' ppp 7.75 x10"% ppp

~ trials now underway
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5. Images and Set Code ~ 1
Ben Pine

Developing a space charge code “Set"

(1) Model and Study Rectangular Vacuum Vessels in ISIS
- implement the appropriate field solvers

- study image effects: rectangular vs elliptical geometry

(2) Develop our own code e e e e e
- allow us to understand operation and limitations
- develop and enhance areas of particular interest
- presently 2D: will extend ...
- plus use of ORBIT, SIMBAD, TRACKnD, etc

View inside ISIS vacuum vessels
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— ISIS

5. Images and Set Code
Ben Pine

Field Solver Benchmarking: Set solver vs CST Studio

o(x,y) D(x,y) Relative Error ®(x,y)

Potential produced by Set for test distribution
O O Inprt test charge distribution for benchmarking "
(X c) y C ) ( ) )
Lo
i

Enor relattve 1o test potential produced by CST

Potential produced by Set for test distributio

100

(X0:Ye)=(5,9) Set solver and CST
agree to <0.1%

Potential produced by Set for test distribution
o - -

(Xe:Ye)=(15,0)

0.0010
0.0005

0.0000
-0.0005
-0.0010
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5. Images and Set Code ~ 3
Ben Pine

Comparisons of Set with ORBIT
* ISIS half integer resonance (as above)
- ~ RMS matched WB beam, 2Q =7 term etc

Incoherent Tune Shifts
Set

- Track for 100 turns; vary intensity

» Good Agreement - where expected

- Incoherent tunes, envelope frequencies

- evolution of g,,.., beam distributions

Distributions on turn 100
ORBIT Set

20

x' (mrad)

L N .

= = = !
' (mrad}

|

(x.x) (v,y)
(x,y)

& "
__m_ R . 1 (X,y)
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5. Images and Set Code ~ 4
Set: Dipole Tune Shift and Next Steps Ben Pine

» Coherent Dipole Tune Shift in Set Coherent tune shifts from Set

- Expect some differences between ORBIT & Set

- ORBIT - just direct space charge (as we used it) : ik b

al tul

Vertic

- Set - images give coherent tune shift

‘‘‘‘‘‘‘‘‘‘‘‘

* Next Steps

- Are now modelling closed orbits with images
- See expected variations in orbit with intensity
- evidence of non linear driving terms ...

- planning experiments to probe images ...
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Summary

« Making good progress in key areas
- experimental study (collaboration on diagnostics)
- machine modelling and bench marking

- code development and study of loss mechanisms

* Topics covered

- Current priorities: Space charge and related loss, injection.

- Next: Instabilities, e-p, ...

« Essential for ISIS upgrades

« Comments and suggestions welcome!
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