

Space Charge and High Intensity Studies on ISIS

C M Warsop

Reporting the work of

D J Adams, B Jones, B G Pine, C M Warsop, R E Williamson

ISIS Synchrotron Accelerator Physics

and: S J Payne, J W G Thomason, ISIS Accelerator Diagnostics, ISIS Operations, ASTeC/IB.

Contents

- Introduction
- Main Topics
 - 1 Profile Monitor Modelling
 - 2 Injection Painting
 - 3 Full Machine Simulations
 - 4 Half Integer Losses
 - 5 Image Effects & Set Code
- Summary

Introduction

- ISIS Spallation Neutron Source ~0.2 MW
 - Commissioning Second Target Station
 - Now ramping up operational intensity
 - ISIS Megawatt Upgrade Studies started

- Will summarise our programme of Ring High Intensity R&D
 - Underpins the work above (& has wider applications)
 - Aim to understand intensity limits of present and upgraded machines
 - Experimentally verify simulation and theory on ISIS where possible
 - Broad: covers diagnostics, experiments, simulation, theory

Time (ms)

The ISIS Synchrotron

Circumference	163 m
Energy Range	70-800 MeV
Rep. Rate	50 Hz
Intensity	$2.5 \times 10^{13} \rightarrow \sim 3.0 \times 10^{13}$ protons per pulse
Mean Power	160 → ~ 200 kW
Losses	Mean Lost Power ~ 1.6 kW (≤100 MeV) Inj: 2% (70 MeV) Trap: 5% (<100 MeV) Acceleration/Extraction: 0.1 – 0.01%
Injection	130 turn, charge-exchange paint injected beam of ~ 25 π mm mr
Acceptances	horizontal: 540 π mm mr with dp/p \pm 0.6% vertical: 430 π mm mr
RF System	h=2, f _{rf} =1.3-3.1 MHz, peak V _{rf} =140 kV/turn h=4, f _{rf} =2.6-6.2 MHz, peak V _{rf} =80 kV/turn
Extraction	Single Turn, Vertical
Tunes	Q_x =4.31, $\overline{Q_y}$ =3.83 (variable with trim quads)

1. Profile Monitor Studies ~ 1

Introduction

Rob Williamson, Ben Pine, Steve Payne

- Profile measurements essential for space charge study
 - **This work**: *Modelling* & *experiments to determine accuracy*
 - Overlaps with diagnostics R&D work S J Payne et al
- Residual gas ionisation monitors
 - Detect positive ions in 30-60 kV drift field

1. Profile Monitor Studies ~ 2

Drift Field Error

Rob Williamson, Ben Pine

Space Charge Error

1. Profile Monitor Studies ~ 3

Rob Williamson, Ben Pine, Steve Payne

1. Profile Monitor Studies ~ 4

Rob Williamson, Ben Pine

Summary

- Good understanding of monitors
 - Correction scheme: good to ±3 mm
- Experimental verification
 - Many checks and agrees well
 - Final checks needed: EPB monitor
- Monitor Developments (S J Payne)
 - Multi-channel, calibration, etc
 - Drift field increase and optimisation
- Seems to work well
 - See next section ...

Bryan Jones, Dean Adams

Injection Studies: Aims and Background

- Studies of injection important for:
 - ISIS operations and optimisation
 - ISIS Megawatt Upgrade Studies
 - Space charge studies
- Want optimal painting
 - Minimal loss from space charge, foil
- Start is Modelling-Measuring ISIS

- ISIS Injection
- 70 MeV H- injected beam: 130 turns
- 0.25 µm Al₂O₃stripping foil
- Four-dipole horizontal injection bump
- Horizontal: falling B[t] moves orbit
- Vertical: steering magnet

Bryan Jones, Dean Adams

Injection Painting Measurements

- Direct measurement of painting
- Use "chopped" beams
- Low intensity (1E11 ppp); less than 1 turn
- Inject chopped pulse at different times
- Least squares fit to turn by turn positions $\bar{z}_{n} = A \exp\left[-\frac{(\delta Q n \pi)^{2}}{2}\right] \cos[\phi + 2\pi n(Q_{0} + n\Delta Q)] + n\Delta \bar{z}_{co} + \bar{z}_{co0}$
- Extract initial centroid betatron amplitude

- Profiles measured on RGI monitors
 - Corrections as described above
- Plus other data …
- Injected beam, sweeper currents, ...

- Compare Measurement-Simulation
- Normal anti-correlated case
- Trial correlated case
- Change vertical sweeper to switch
- Reverse current vs time function

Bryan Jones, Dean Adams

Simulation and Measurement: Normal Painting

Bryan Jones, Dean Adams

Simulation and Measurement: Painting Experiment

Key - Measured (corrected) - Simulation (ORBIT)

3. Machine Modelling ~ 1

Dean Adams, Bryan Jones

Injection Simulation Details

- ORBIT multi-turn injection model
- Painting: H Dispersive orbit movement; V Sweeper Magnet
- Injection bump, momentum spread and initial bunching
- 2D transverse (with space charge)
- 1D longitudinal (no space charge yet)

Example: Normal anti-correlated case 2.5E13 ppp

(X, X') (Y, Y')(dE, phi) (\mathbf{X},\mathbf{Y})

Image: constrained of the second of the se

3. Machine Modelling ~ 2

Dean Adams

Longitudinal Studies ~ work in progress

- TRACK1D works well basis of DHRF upgrade (C R Prior)
- Now working to model in detail in ORBIT (1D then 2.5D)
- Collaborating on tomography (S Hancock, M Lindroos, CERN)

Tomography trials

⁽real data!)

3. Machine Modelling ~ 3

Dean Adams

Full Machine Modelling in ORBIT ~ work in progress

- Simulation of full machine cycle 2.5D some reasonable results
- time variation of loss
- \rightarrow reproduces main loss 0 3 ms
- Collimators now included
- ~ space variation of loss

 \rightarrow good results (normal ops & Mice target)

Importance for the ISIS RCS

- Transverse space charge key loss mechanism
- Peaks at ~0.5 ms during bunching ΔQ_{inc} ~-0.4
- In RCS is 3D problem: initially study simpler 2D case
- First step: envelope equation calculations
- ISIS large tune split case: independent h and v
- Get 8/5 "coherent advantage" (e.g. Baartman)
- Numerical solutions confirm behaviour

4. Half Integer Losses ~ **1** *Chris Warsop*

4. Half Integer Losses ~2

Turn 100

Chris Warsop

ORBIT 2D Simulation Results

- 5E4 macro particles; ~RMS matched waterbag beam
- Tracked for 100 turns; driven $2Q_v=7$ term

4. Half Integer Losses ~3

Chris Warsop

ORBIT 2D Simulation Results

- Repeat similar simulations, but driven by representative $2Q_h=8 \& 2Q_v=7$ terms
- If allow for BF and energy is compatible with loss observation on ISIS

Questions important for real machines ...

• What causes ε_{rms} growth?

Mis-match, non stationary distributions,

driving terms from lattice, ... ?

- Can we minimise it?
- Do codes give good predictions?
- can they predict emittance growth & loss?

Have compared ORBIT with theory

- to see if behaviour follows models

4. Half Integer Losses ~ 4 Chris Warsop Study of Halo & Future Work Vertical (Y_N, Y_N) • Comparison of halo structure with theory Simulation Theory [*] - ORBIT: Poincare routines: AG ISIS Lattice; RMS Matched WB; guad driving term; large tune split; Intensity - Theoretical model: Smooth, RMS equivalent KV, quad driving term; "small tune split" (equal) [*Venturini & Gluckstern PRST-AB V3 p034203,2000] Increasing Normalised - Main features agree ... vertical phase space • Next - Check number of particles migrating into halo ...? - Introduce momentum spread (then extend to 3D) 7.00 x10¹³ ppp 7.25 x10¹³ ppp 8.00 x10¹³ ppp 7.50 x10¹³ ppp - Comparison with ISIS in Storage ring mode 8.50 x10¹³ ppp 7.75 x10¹³ ppp ~ trials now underway

5. Images and Set Code ~ 1

Ben Pine

Developing a space charge code "Set"

(1) Model and Study Rectangular Vacuum Vessels in ISIS

- implement the appropriate field solvers
- study image effects: rectangular vs elliptical geometry
- (2) Develop our own code
 - allow us to understand operation and limitations
 - develop and enhance areas of particular interest
 - presently 2D: will extend ...
 - plus use of ORBIT, SIMBAD, TRACKnD, etc

View inside ISIS vacuum vessels

5. Images and Set Code ~ 2 Ben Pine

Field Solver Benchmarking: Set solver vs CST Studio

Comparisons of Set with ORBIT

- ISIS half integer resonance (as above)
- ~ RMS matched WB beam, $2Q_v=7$ term etc
- Track for 100 turns; vary intensity
- Good Agreement where expected
- Incoherent tunes, envelope frequencies
- evolution of ε_{rms} , beam distributions

5. Images and Set Code \sim 3

Ben Pine

5. Images and Set Code ~ 4 Ben Pine

Set: Dipole Tune Shift and Next Steps

- Coherent Dipole Tune Shift in Set
- Expect some differences between ORBIT & Set
- ORBIT just direct space charge (as we used it)
- Set images give coherent tune shift
- Next Steps
- Are now modelling closed orbits with images
- See expected variations in orbit with intensity
- evidence of non linear driving terms ...
- planning experiments to probe images ...

Summary

- Making good progress in key areas
 - experimental study (collaboration on diagnostics)
 - machine modelling and bench marking
 - code development and study of loss mechanisms
- Topics covered
 - Current priorities: Space charge and related loss, injection.
 - Next: Instabilities, e-p, ...
- Essential for ISIS upgrades
- Comments and suggestions welcome!

Acknowledgements:

ASTeC/IB - S J Brooks, C R Prior ~ useful discussions STFC e-Science Group ~ code development ORNL/SNS ~ for the use of ORBIT