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Introduction

• ISIS Spallation Neutron Source ~0.2 MW
- Commissioning Second Target Station

- Now ramping up operational intensity

- ISIS Megawatt Upgrade Studies started  

• Will summarise our programme of Ring High Intensity R&D
- Underpins the work above (& has wider applications)

- Aim to understand intensity limits of present and upgraded machines

- Experimentally verify simulation and theory on ISIS where possible

- Broad: covers diagnostics, experiments, simulation, theory
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Circumference 163 m
Energy Range 70-800 MeV
Rep. Rate 50 Hz
Intensity 2.5x1013 → ~ 3.0x1013 protons per pulse
Mean Power 160 → ~ 200 kW
Losses Mean Lost Power ~ 1.6 kW  (≤100 MeV)

Inj: 2% (70 MeV) Trap: 5% (<100 MeV)
Acceleration/Extraction: 0.1 – 0.01%

Injection 130 turn, charge-exchange 
paint injected beam of ~ 25 π mm mr

Acceptances horizontal: 540 π mm mr with dp/p ± 0.6% 
vertical:     430 π mm mr

RF System h=2, frf =1.3-3.1 MHz, peak Vrf=140 kV/turn
h=4, frf =2.6-6.2 MHz, peak Vrf=80 kV/turn

Extraction Single Turn, Vertical
Tunes Qx=4.31, Qy=3.83 (variable with trim quads)

The ISIS Synchrotron



• Profile measurements essential for space charge study
- This work: Modelling & experiments to determine accuracy

- Overlaps with diagnostics R&D work - S J Payne et al

• Residual gas ionisation monitors
- Detect positive ions in 30-60 kV drift field

• Two main sources of error:
(1) - Drift Field Non-Linearities 

(2) - Beam Space Charge

• Modelled dynamics of ions with
- CST Studio™ for fields

- “In house” particle trackers

ELECTRODE

DETECTOR

1. Profile Monitor Studies ~ 1
Rob Williamson, Ben Pine, Steve Payne
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Introduction



Drift Field Error

2D Tracking Study

3D Tracking Study

1. Profile Monitor Studies ~ 2
Rob Williamson, Ben Pine

(xs, ys)

xd

Particle 
Trajectory

- Field error distorts trajectories

- Measured position xd=F(xs,ys)

For given geometry find:

- Averaged scaling correction

- More complicated in 3D case

- Longitudinal fields – new effects

- Detected ions from many points

- Scaling corrections still work

- Ideas for modifications

Φ(x,y)

Φ(y,z) Blue: Trajectory of particles entering detector

Red: Origin of particles entering detector

Black: Transverse section of beam at given z

Trajectories as a function of z along beam



Space charge field distorts trajectories
Space Charge Error
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1. Profile Monitor Studies ~ 3
Rob Williamson, Ben Pine, Steve Payne
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Sim & Meas & Theory

k vs Width
Sim (3D) & Meas

Width vs Vd
-1

Simulation (3D)

• Increase in given percentage width

• Also                     - for “normal” distributions

• So can correct a profile for space charge 

• Confirmed experimentally & in 2D/3D simulations

Simple calculation: 
trajectory deflection

1
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−⋅=Δ dxx VkW

1−∝ dV

%% xx Wk ∝

Width vs Vd
-1

Measurement
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• Good understanding of monitors

- Correction scheme: good to ±3 mm

• Experimental verification

- Many checks and agrees well

- Final checks needed: EPB monitor

• Monitor Developments (S J Payne)

- Multi-channel, calibration, etc

- Drift field increase and optimisation

• Seems to work well

- See next section … 

1. Profile Monitor Studies ~ 4
Summary Rob Williamson, Ben Pine

Basic correction scheme
- drift field and space charge

- for near-centred, “normal” beams

3D simulation: 
original, “measured” 
and corrected profile

angular acceptance 
of detector, reduces 
errors to ± 3 mm



Injection Septum

Vertical Sweeper

Injection 
Dipoles

Foil Injected 
Beam

Closed Orbit

Dispersive 
Closed Orbit

2. Injection Painting ~ 1
Bryan Jones, Dean Adams

• ISIS Injection
- 70 MeV H- injected beam: 130 turns

- 0.25 μm Al2O3stripping foil

- Four-dipole horizontal injection bump

- Horizontal: falling B[t] moves orbit

- Vertical: steering magnet

• Studies of injection important for:
- ISIS operations and optimisation

- ISIS Megawatt Upgrade Studies

- Space charge studies 

• Want optimal painting
- Minimal loss from space charge, foil

• Start is Modelling-Measuring ISIS

Injection Studies: Aims and Background



2. Injection Painting ~ 2
Bryan Jones, Dean Adams

• Direct measurement of painting
- Use “chopped” beams

- Low intensity (1E11 ppp); less than 1 turn

- Inject chopped pulse at different times 

- Least squares fit to turn by turn positions

- Extract initial centroid betatron amplitude

Injection Painting Measurements

• Profiles measured on RGI monitors
- Corrections as described above

• Plus other data … 
- Injected beam, sweeper currents, …
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• Compare Measurement-Simulation
- Normal anti-correlated case

- Trial correlated case

• Change vertical sweeper to switch
- Reverse current vs time function

-0.4 -0.2 0

Time (ms)



Simulation and Measurement: Normal Painting
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2. Injection Painting ~ 3
Bryan Jones, Dean Adams

Horizontal

Vertical

Painting
anti-correlated

Horizontal Profile Vertical Profile

Key - Measured (corrected) - Simulation (ORBIT)

Not the final iteration, but 
pretty good agreement
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Anti-correlated Correlated

2. Injection Painting ~ 4
Bryan Jones, Dean Adams

Horizontal

Vertical - correlated
Vertical Profile

Simulation and Measurement: Painting Experiment

Vertical Profile
Painting

Vertical - anti-correlated

Key - Measured (corrected) - Simulation (ORBIT)

• Follows expectations … [ran at 50 Hz OK!]

• Plan to develop and extend to study

- other painting functions: optimal distributions

- emittance growth (during & after injection)

- foil hits & related losses



Injection Simulation Details
- ORBIT multi-turn injection model

- Painting: H - Dispersive orbit movement; V - Sweeper Magnet

- Injection bump, momentum spread and initial bunching

- 2D transverse (with space charge)

- 1D longitudinal (no space charge yet)

3. Machine Modelling ~ 1
Dean Adams, Bryan Jones

(x,x’)   (y,y’)

(x,y)   (dE, phi)

Turn 9 Turn 39 Turn 69 Turn 99 Turn 129

Example: Normal anti-correlated case 2.5E13 ppp

ORBIT



Longitudinal Studies ~ work in progress
- TRACK1D - works well - basis of DHRF upgrade (C R Prior)

- Now working to model in detail in ORBIT (1D then 2.5D)

- Collaborating on tomography (S Hancock, M Lindroos, CERN)

3. Machine Modelling ~ 2

TRACK1D ORBIT 1D

Dean Adams

Tomography trialsComparisons and trials at 0.5 ms after field 
minimum on ISIS for ~ 2.5x1013 ppp

(real data!)



Full Machine Modelling in ORBIT ~ work in progress
• Simulation of full machine cycle 2.5D – some reasonable results 

- time variation of loss

→ reproduces main loss 0 - 3 ms

• Collimators now included

~ space variation of loss

→ good results (normal ops & Mice target)

3. Machine Modelling ~ 3
Dean Adams

Loss vs Time
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Importance for the ISIS RCS
• Transverse space charge - key loss mechanism

- Peaks at ~0.5 ms during bunching ∆Qinc~-0.4

- In RCS is 3D problem: initially study simpler 2D case

4. Half Integer Losses ~ 1
Chris Warsop

3.8 3.9 4 4.1 4.2 4.3 4.4 4.5
Qx3.4
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Incoh Q Shift

• First step: envelope equation calculations
- ISIS large tune split case: independent h and v

- Get 8/5 “coherent advantage” (e.g. Baartman)

- Numerical solutions confirm behaviour
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ORBIT 2D Simulation Results
- 5E4 macro particles; ~RMS matched waterbag beam 

- Tracked for 100 turns; driven 2Qv=7 term

6x1013 ppp

5x1013 ppp

7x1013ppp

(x,x’) (y,y’)

(x,y)  (εx,εy)

4. Half Integer Losses ~2
Chris Warsop

Envelope Frequencies Incoherent Q’s Envelopes
Horizontal Vertical

Turn 100



ORBIT 2D Simulation Results
- Repeat similar simulations, but driven by representative 2Qh=8 & 2Qv=7 terms

- If allow for BF and energy is compatible with loss observation on ISIS

4. Half Integer Losses ~3
Chris Warsop

Driven both planes 
2Qh=8 & 2Qv=7
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Emittance Growth

Questions important for real machines …
• What causes εrms growth?

Mis-match, non stationary distributions, 

driving terms from lattice, … ?

• Can we minimise it?

• Do codes give good predictions?

- can they predict emittance growth & loss? 

Have compared ORBIT with theory
- to see if behaviour follows models



Study of Halo & Future Work
Vertical (YN, YN')

Simulation Theory [*]
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4. Half Integer Losses ~ 4

• Comparison of halo structure with theory

- ORBIT: Poincare routines: AG ISIS Lattice; RMS 
Matched WB; quad driving term; large tune split;

- Theoretical model: Smooth, RMS equivalent KV,
quad driving term; “small tune split” (equal)
[*Venturini & Gluckstern PRST-AB V3 p034203,2000]

- Main features agree …

Chris Warsop

• Next

- Check number of particles migrating into halo …?

- Introduce momentum spread (then extend to 3D)

- Comparison with ISIS in Storage ring mode
~ trials now underway 

Normalised 
vertical 
phase space



Developing a space charge code “Set"

(1) Model and Study Rectangular Vacuum Vessels in ISIS

- implement the appropriate field solvers

- study image effects: rectangular vs elliptical geometry

(2) Develop our own code

- allow us to understand operation and limitations

- develop and enhance areas of particular interest

- presently 2D: will extend … 

- plus use of ORBIT, SIMBAD, TRACKnD, etc

5. Images and Set Code ~ 1
Ben Pine

View inside ISIS vacuum vessels



Field Solver Benchmarking: Set solver vs CST Studio

5. Images and Set Code  ~ 2

(xc,yc)=(0,0)

(xc,yc)=(5,5)

(xc,yc)=(15,0)

Set solver and CST 
agree to <0.1%

Ben Pine

ρ(x,y) Ф(x,y) Relative Error Ф(x,y)



Comparisons of Set with ORBIT

5. Images and Set Code ~ 3

Ben Pine

(x,x’) (y,y’)

(x,y) 

(x,x’) (y,y’)

(x,y) 

Incoherent Tune Shifts
• ISIS half integer resonance (as above)

- ~ RMS matched WB beam, 2Qv=7 term etc

- Track for 100 turns; vary intensity

• Good Agreement - where expected

- Incoherent tunes, envelope frequencies

- evolution of εrms, beam distributions

ORBIT                   Set

Distributions on turn 100

ORBIT                                    Set



Set: Dipole Tune Shift and Next Steps
5. Images and Set Code ~ 4

Ben Pine

Coherent tune shifts from Set

• Next Steps
- Are now modelling closed orbits with images

- See expected variations  in orbit with intensity

- evidence of non linear driving terms …

- planning experiments to probe images …

• Coherent Dipole Tune Shift in Set
- Expect some differences between ORBIT & Set

- ORBIT - just direct space charge (as we used it)

- Set - images give coherent tune shift



• Making good progress in key areas
- experimental study (collaboration on diagnostics)

- machine modelling and bench marking

- code development and study of loss mechanisms

• Topics covered
- Current priorities: Space charge and related loss, injection.

- Next: Instabilities, e-p, …

• Essential for ISIS upgrades

• Comments and suggestions welcome!

Summary
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