Beam Intensity Challenges at the Spallation Neutron Source

August 25, 2008

42nd ICFA Advanced Beam Dynamics Workshop on High-Intensity, High-Brightness Hadron Beams

Nashville TN, USA

J. Galambos – on behalf of the SNS team

SNS Accelerator Complex

May 29 2006: An Important Date!

3

😂 SNS Logbook - Mozilla Firefox							
<u>File E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>Bookmarks</u> <u>Tools</u> <u>H</u> elp					<u></u>		
💠 🔹 📄 😴 🕑 🏠 🗋 https://snsapp1.s	ns.ornl.gov/Logbook/WebObjects/Logbook.w	oa/wa/displayPrimaryPage?w	osid=swxkl 🕍	• 🕨 💽 • hb 2006 ici	fa 🔍		
🕒 SNS Logbook	Logbook 🛛 🚺 🗋	Slide Show			•		
Logbook: Radiation Safety	💌 🛛 No Entry Filters 💌 🚛 🌅	ن ک 🔍 🖪 🗞 🕻	86 🕅 🛤	🗉 🖳 🂽 😰 Joh	n Galambos <u>logout</u>		
06/01/2006 Go < 1 Day(s) 💌	▶ Today						
Thursday, June 01, 2006 - Radiation Safety Logbook							
# Title	Posted	Author	Priority	Category(s)	Impact Area(s) 📤		
1 Radiation Survey of Tritium Removal Roc	<u>Thu, Jun 01, 2006 09:25</u>	David Craft	Normal	Posting			
2 POSTINGs and SURVEY	Thu, Jun 01, 2006 11:25	Michelle Timm	Normal	Radiological Survey	· ·		
<					<u> </u>		
Thu, Jun 01, 2006 11:24 Radiat	ion Safety Radiological Sur	7ey	S	tatus Normal	Michelle Timm		
POSTINGs and SURVEY Posted: Thu, Jun 01, 2006 11:25							
A survey behind the yellow line was completed in the HEBT, KIBT, and KING. The HEBT was down-posted to a							
still posted HRA. There will have to be multiple Radiation Areas posted inside before down-posting can							
happen. A detailed survey was completed in the LINAC. The LINAC is now down-posted to a Radaition Buffer							
Area/Radioactive Materials Area	ligh Deem Lees		the LINA	AC between CM-1	4 to CM-18. A		
map and survey write-up will be are needed in the mean time.	nigh beam Loss		tact the	9 RUIS 11 exact	dose rates		
					*		
Done							
Dure				S	nsappi.sns.omi.gov 🔤 💥		
Managed by UT-Battelle					-41		
or the Department of Energy	Presenta	ation name					

Power Ramp-up: 0.5 MW to date

 Did manage some increase in the beam power the past 2 years

High Level Beam Parameters Achieved

	Design	Best Ever (Not Simultaneous)	Highest Power Run (Simultaneous)
Pulse Length (µSec)	1000	1000	600
Beam Energy (MeV)	1000	1010	890
Peak Accelerated Current (mA)	38	40	32
Average Accelerated Current (mA)	26	22	17
Repetition Rate (Hz)	60	60	60
Beam Power (kW)	1440	520	540

Linac Beam Quality – Transverse Profiles

Beam transverse profiles looks clean at exit of warm linac (Gaussian / halo free)

- To the resolution of wire scans
- Measured optics are close to that expected with online-model (except 33% increased emittance) using design quadrupole settings
- In practice we perturb quadrupoles a few percent to reduce beam loss
- 6 Managed by UT-Battelle for the Department of Energy

There is Beam Loss in the Superconducting Superconducting Linac Warm Sections (*Galambos, Popova WG-D*)

Residual dose rate at 30 cm, 24hrs. after production run

- Activation became noticeable as beam power exceeded ~ 50 kW
- Moved BLMs closer to beam pipe to observe the loss
- Where is it coming from: leading candidate is longitudinal tails
 - More sensitive to warm linac RF settings than quadruple settings
- Loss is greater than expectation, which was close to zero
 - Residual activation is not limiting maintenance but equipment robustness to radiation is a concern

Fractional Beam Loss Measurements (Galambos WG-D, Joint WG D-F, Zhukov – WG-C)

- Design criteria is 1W/m uncontrolled beam loss
 - At 1 MW: 10⁻⁶ fractional beam loss/m
- The Challenge: spill a small amount of beam (<< 10⁻³ of a full production pulse), near Beam Loss Monitors, in a similar way as loss occurs during production
- Superconducting Linac: < 2x10⁻⁶ beam / warm section
 - Medium β : uncertainty <u>+</u> factor of 3
 - High β : uncertainty <u>+</u> factor of 2
- Ring Injection: < 6x10⁻⁴
 - Close to expected loss fraction for operational conditions

SCL Longitudinal Acceptance (Y. Zhang, WG-B)

Model beam emittance

- Beam should fit well into the nominal acceptance
- SCL Longitudinal Acceptance measurement indicates normal acceptance

Measured Acceptance (Current Transmission)

Measured Acceptance

Flexible SCL RF Set-up Facilitates Scans in Phase and Amplitude (Y. Zhang)

 Independently powered SCL cavities facilitates model based scans in phase and energy

Presentation name

- Used to construct longitudinal acceptance measurements
- Indicates the possibility of longitudinal halo

Bunch Shape Measurement S. Aleksandrov, S. Feshenko, et.al.

- Measurements of individual RF bunch lengths in the CCL indicate an RMS bunch length up to 30% too long.
 - Not enough RMS increase to explain SCL beam loss
- Very little tail at the entrance to the CCL

The Injection Region is the Most Complicated Part of the SNS Ring

- Injection losses are at full energy, and this is the highest beam loss area in the machine
- The ring injection straight is expected to be a high loss area due to foil scattering
- It is the highest beam loss area at SNS

Injection Area Modifications (*M. Plum, WG-C, J.G. Wang WG-C*)

Foil Survivability is a Concern

Maximum Temperatures on The SNS Carbon Stripping Foils 🗂 🎽

 Predictions are that we are approaching foil survivability limits somewhere between 1 and 2 MW

Foil Development at ORNL (R. Shaw et.al.)

- SNS is using a nano-crystalline foil, 1% CH4, 90% Ar, 350 mg/cm² developed at ORNL
- Corrugated pattern around edge provides mechanical strength

Design Beam / Foil Interaction (Joanne Beebee-Wang, BNL)

- Nominally 2 % beam misses foil
 - Nominal foil size = 20x12 (mm), practice beam size = 25x17 (mm)
 - Practice << 1% misses foil
- Nominally 3 % is not fully stripped
 - Nominal Foil thickness = 300 μ g/cm², practice thickness = 450 μ g/cm²
 - Practice ~ 1.5% is not fully stripped
- Foil changes introduced to reduce beam transported to the Injection dump

- Image of the foil during a 480 kW production run
 - All light is from the foil (C glow starts at ~ 1100 C)
 - Hot spot is the linac beam, dimmer light is from injection painted circulating beam
- Need to reduce linac halo, and position the linac beam closer to the foil edge to reduce foil hits
 - Design is ~ 7 foil traversals/proton, measurement indicates ~ 20 traversals/proton
- How much more beam can the foils take?
 - 1 foil failure to date (infant)

Laser Stripping Proof-of-Principle Experimental Results (Danilov – WG-C)

- Since HB2006 successful proof-ofprinciple of full laser stripping of H⁻(90% efficiency)
- •Now investigating demonstration stripping for longer pulse lengths
 - •Key issues are efficient use of laser light

Energy and power dependence

Ring Residual Activation Decay History (Galambos WG-D)

 Despite increasing the beam power by factor of 2.5, the long term residual activation buildup is not increasing proportionally

Modeling Beam Loss – Details Become Important (J. Holmes: WG-A)

Modeling beam loss at an aperture reduction in the injection region

Presentation name

- Details are important: e.g. space charge
- ORBIT code is used to study loss

Collective Effects / e-P Instability (Cousineau (WG-A)

 Extending the storage time and reducing the RF amplitude can see e-P signature for latest production beam

E-p signature is also evident at lower intensities

- e-P signature can be seen at low intensities with no measureable reduction in beam current
- Magnitude of the oscillation is small compared to the beam size
- Effect on beam loss for this "small scale collective" behavior is uncertain
- We are implementing a damper system (C. Deibele et. al.: WG-F)

Beam On Target Concerns (Plum - WG- C)

Beam on Target - phosphor screen

- There are strong limits on peak power density on the Target and upstream vacuum window (dependence on rep-rate)
- Limits on the fraction of beam missing the target
- Ensuring that the beam on Target center
- Ensuring that the waste beams from incomplete foil stripping hit the injection dump

Beam centering on the target

- Last BPMs are located ~ 10 m upstream from the Target
- Extrapolate beam position to the Target
- Use thermocouples on the Target shroud to do final centering
- Fast machine protection limits magnet currents and loss monitor signals in the Ring extraction and transport line to the Target (errant beam control)
 - Fine line between safe protection and excessive false trips

Beam Power Density Calculations

- Measure beam sizes at wires and a harp upstream of the target
- Use a model to extrapolate the peak target density to the window / Target
- Acceptable target power density profiles are not the same as minimum beam loss profiles

Other Areas of Challenge

- Collimation: HEBT collimation starts to become effective at high intensity, but performance repeatability is not consistent
- Machine protection: balance between good protection and high availability (Galambos WG-D)
- High level software: ability to effectively utilize diminishing beam study time (Shishlo WG B & D)
- Diagnostics: Robust loss detection, halo measurements, non-intercepting diagnostics (Assadi, Zhukov, Gorlov WG-F)
- Availability (Galambos WG-D)

Summary

Thanks for your attention

