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Abstract

Cyclotrons, rings for precise nuclear mass spectrome-
try, and some light sources with extremely short bunches
are operated or planned to be operated in the isochronous
or almost isochronous regime. Also, many hadron syn-
chrotrons run in the isochronous regime for a short period
of time during transition crossing. The longitudinal mo-
tion is frozen in the isochronous regime that leads to accu-
mulation of the integral of the longitudinal space charge
force. In low-gamma hadron machines, this can cause
a fast growth of the beam energy spread even at mod-
est beam intensities. Additionally, the transverse compo-
nent of the space charge effectively modifies the disper-
sion function and the slip factor shifting the isochronous
(transition) point. In this paper, we discuss space charge
effects in the isochronous regime and present experimen-
tal results obtained in the Small Isochronous Ring, devel-
oped at Michigan State University specifically for studies
of space charge in the isochronous regime.

INTRODUCTION

Numerical and experimental studies of space charge
effects in the isochronous regime conducted at Michi-
gan State University in 2001-2004 revealed that the space
charge field could drive a fast longitudinal instability that
caused breakup of coasting bunches in Small Isochronous
Ring (SIR) within a few turns [1],[2]. In simulations, the
instability was observed not only in the isochronous regime
but also below the transition. Originally, the cause of this
instability was not completely understood.

Significant efforts have been undertaken to understand
the dynamics of intense beam at the transition energy in
synchrotrons. Results of this studies have been docu-
mented elsewhere [3],[4]. Typically models used for these
studies included the longitudinal component of the space
charge force and its effect on the longitudinal motion.
Transverse effects were limited to transverse defocusing
due to the incoherent space charge field and the correspond-
ing effective increase of the dispersion function (Umstätter
effect [5]). However, none of these models seemed to be
able to explain the beam behavior observed in SIR.

The observed instability can be explained by the effect
of the radial component of the coherent space charge force
on the coherent longitudinal motion. As shown later in this
paper, this field can arise from deformation of the beam
shape and cause a negative-mass-like instability even if the
machine optics is set below the transition. The importance
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of including the transverse coherent field in the isochronous
regime has been known for some time in the cyclotron com-
munity [6]; although, an analytical model of this process
has not been developed.

EFFECT OF COHERENT TRANSVERSE
SPACE CHARGE FIELD

Longitudinal space charge impedance: short
wavelength approximation

First, we demonstrate that the longitudinal impedance
has a maximum at a wavelength comparable to the beam
diameter. The resulting high frequency energy perturbation
can cause a transverse offset of the beam centroid, which
in turn can give rise to a transverse coherent electric field.

The space charge impedance per turn of a uniformly
charged beam is given in the long wavelength limit by

Z||(k) = ik
Z0R0

γ2β

(
1
2
− ln

(a

b

))
, (1)

where Z0 is the characteristic vacuum impedance, 377 Ω,
R0 is the average radius an accelerator, γ and β are the rel-
ativistic factors, and a and b are the beam and the vacuum
chamber radii respectively.

When the wavelength becomes comparable to the diam-
eter of the vacuum chamber, equation (1) becomes invalid.
In the short wavelength limit, the effect of image charges
can be neglected and the impedance can be trivially ob-
tained by direct integration of the electric field on the beam
axis. For a round beam with a uniform transverse charge
distribution, the longitudinal space charge impedance in the
short wavelength limit is

Z||(k) = i
2Z0R0

ka2β

(
1 − ka

γ
· K1

(
ka

γ

))
, (2)

where K1 is the modified Bessel function of the second
kind.

Figure 1 shows the longitudinal space charge impedance
per turn in both long and short wavelength limits for a non-
relativistic beam (γ = 1). The impedance reaches its ab-
solute maximum at the wavelength approximately equal to
2.5 beam diameters.

Transverse space charge field

Perturbations of the longitudinal charge density produce
a longitudinal electric field. Since the longitudinal motion
is frozen in the isochronous regime, the effect of the longi-
tudinal field accumulates with time, causing the correlated
energy spread to grow. As the energy of particles changes,
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Figure 1: Longitudinal impedance (arb. units) in long
and short wavelength approximations as a function of the
wavelength normalized to the beam diameter, 2a. The
impedance reaches its maximum at λ ≈ 2.5 beam diam-
eter. The a/b ratio is equal to 5.

their transverse position also changes because of the radial
dispersion. If the longitudinal charge density perturbation
is a pure sinusoidal wave, the transverse displacement of
the beam centroid is proportional to cosine with the same
wavelength.

The radial wiggles of the beam centroid cause a trans-
verse electric field. This field can result from two sources:
a) image charges on the vacuum chamber that are respon-
sible for the coherent tune shift and b) snaking itself. In
this paper, we assume that the vacuum chamber is formed
by two horizontal perfectly conducting planes and that the
coherent radial field is only due to the beam snaking. Ad-
ditionally, we will assume that initial perturbations of the
linear charge density are small comparatively to the aver-
age charge density. Also, we will consider only the non-
relativistic case (γ = 1). If the beam centroid displace-
ment is proportional to cosine, the radial field on the beam
centroid created by the beam wiggles has also a cosine de-
pendence upon the longitudinal coordinate. If the beam
wiggles are small comparatively to the beam radius, the
coherent radial field at the beam centroid can be obtained
by trivial integration, giving:

Ex = 2πρxc(z)(1 − ka · K1(ka)), (3)

where ρ is the charge density within the beam, xc(z) is
the deviation of the beam centroid from the equilibrium or-
bit with no energy deviation. Figure 2 shows the factor
1 − ka · K1(ka)) as a function of the wavelength. Note
that the coherent transverse electric field due to the beam
centroid wiggling is approximately equal to the incoherent
space charge field within the beam, 2πρx, for short wave-
length perturbations and small x. In the long wavelength
limit, the coherent field disappears.
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Figure 2: Factor 1 − ka · K1(ka)) as a function of the
wavelength normalized to the beam diameter, 2a.

Dispersion function and slip factor with space
charge

The equation of radial motion can be approximately
written in the smooth approximation and the low energy
limit as

x′′ +
ν2

R2
0

x =
1

R0

δp

p
+

eEx

mβ2c2
. (4)

Using Eq. (3), one can easily find the steady state solution
of this equation:

xss ≈ R0

ν2

(
1 + 2

(
−δν

ν

)
sc

(1 − ka · K1(ka))
)

δp

p
(5)

where we expressed the charge density ρ via the incoherent
space charge tune shift (δν/ν)sc, assuming uniform charge
density. Thus, one can conclude that the coherent radial
electric field caused by beam wiggling changes the disper-
sion function D by

δD ≈ 2D

(
−δν

ν

)
sc

(1 − ka · K1(ka)) (6)

The dispersion function variation caused by the trans-
verse component of the space charge force changes the slip
factor. The modified slip factor is approximately given by

ηs = ηs0 +
δD

R0

≈ ηs0 + 2αp

(
−δν

ν

)
sc

(1 − ka · K1(ka)), (7)

where ηs0 is the ”bare” slip factor without the space charge.
As the incoherent space charge tune shift is always nega-
tive, the space charge tends to increase the dispersion func-
tion and the slip factor. In the isochronous regime, η s0 is
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zero by definition. Thus, if the machine optics is set to be
exactly isochronous, the effective slip factor with the space
charge in this case will be

ηs ≈ 2αp

(
−δν

ν

)
sc

(1 − ka · K1(ka)), (8)

In the low energy limit, the compaction factor αp is equal
to unity.

Negative-mass-like instability and its growth rate

The growth rate of the microwave instability is given by
the formula [4]

τ−1(k) = ω0

√
−i

ηseI0kR0Z||
2πβ2E

, (9)

where ω0 is the revolution angular frequency, I0 is the av-
erage peak current, and E is the beam full energy.

If Z|| is the space charge impedance, the instability can
happen only if ηs is positive. In this case, the microwave
instability is also referred to as the negative-mass insta-
bility. As was shown before, the transverse space charge
force effectively increases the dispersion function and the
slip factor. Therefore, a negative-mass-like instability can
happen even if the machine optics is set below the transi-
tion. The growth rate of this instability can be found by in-
serting (7) into (9). Because the longitudinal space charge
impedance peaks at a wave length approximately equal to
2.5 beam diameters, we will use the short wavelength ap-
proximation given by (2). If the machine bare optics is
exactly isochronous (ηs0 = 0), the growth rate is given by

τ−1(k) ≈ 2
√

2ω0

(
−δν

ν

)
sc

(1 − ka · K1(ka)) (10)

Thus, the growth rate of this instability at the transition is
proportional to the beam current.

If the bare machine optics is set below the transition
(ηs0 < 0), the instability has a threshold current corre-
sponding to the condition:

2
(

δν

ν

)
sc

≈ ηs0 (11)

In this case, the maximum growth rate depends on the beam
current I as

τ−1
max ∼ I

√
1 − I0

I
(12)

where I0 is the threshold corresponding to the condition
(11).

SMALL ISOCHRONOUS RING

The Small Isochronous Ring (SIR) is a compact, low en-
ergy storage ring designed to simulate the dynamics of in-
tense beams in the isochronous regime. The ring was devel-
oped at Michigan State University and has been operational
since December 2003.

SIR is designed to run low energy light-ion beams. This
choice of beam parameters simplified the ring design and
minimized the cost of the project. The ring consists of four
90◦, zero-gradient dipole magnets with edge focusing. Fig-
ure 3 shows a photograph of SIR. Table 1 gives the main
ring parameters. An H+

2 beam is produced by a multi-cusp
ion source, that can be biased up to 30 kV. An analyzing
magnet located under the ion source provides charge-to-
mass state selection and steers the beam towards the ring.
In the injection line, the beam is chopped by a chopper and
matched to the ring by a triplet of electrostatic quadrupoles.
The bunch length can be changed from 100 nanoseconds
(∼15 cm) to 4 microseconds (∼5.5 m). The beam is in-
jected into the ring by a fast pulsed electrostatic inflector.
After injection, an injected bunch coasts in the ring. Al-
though the ring does not have RF, the bunch length stays
almost unchanged because of the ring isochronism. The
beam lifetime in the ring is limited to approximately 200
turns due to electron pickup from the residual gas. After
a chosen number of turns, the bunch is deflected towards
either a phosphor screen or a Fast Faraday Cup (FFC) sit-
uated above and below the median plane respectively. The
Faraday Cup measures the longitudinal beam profile of the
beam with a time resolution of 1 ns corresponding to a
spatial resolution of approximately 1-1.5 mm. The phos-
phor screen is used to observe the transverse beam profile.
Changing the extraction turn number, we can observe tem-
poral evolution of the longitudinal and radial beam profiles
in the ring.

Figure 3: Small Isochronous Ring
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Table 1: Primary SIR parameters.

Beams H+
2

Energy 10-30 keV
νx, νy 1.14, 1.11
αp-1/γ2 1.7 · 10−4

C 6.6 m
Rev. period 5 μsec
Nturns, up to 200
Ipeak, typical 0-25 μA

SIMULATIONS OF BEAM DYNAMICS IN
SIR

The code CYCO [1] was used to simulate the beam dy-
namics in SIR. The code calculates particle trajectories in a
realistic 3D magnetic field map, solving the full, unsimpli-
fied system of equations of motion with the space charge.
The code uses the classical 4th order Runge-Kutta integra-
tion method to numerically solve the system. The space
charge field of the beam is calculated by a PIC field solver.
The solver employs Fast Fourier Transforms and the fast
convolution theorem to calculate the beam field. In cal-
culating the space charge field, the program includes the
effect of image charges induced on the vacuum chamber
assuming that the vacuum chamber consists of two parallel
perfectly conducting planes. No other impedance besides
the space charge is included.

The initial beam distribution was chosen to mimic the
phase space of the real beam measured by pairs of moving
slits and a fast faraday cup. The transverse distribution was
a uniform 4D distribution

f = H

(
1 − Ax

εx
+

Ay

εy

)
, (13)

where H is the Heaviside function. Ax and Ay are
Courant-Snyder invariants in the horizontal and vertical
planes. The maximum values of Courant-Snyder invariants
in x and y were the same, εx,y = 5 · 10−5 m, correspond-
ing the beam diameter in the ring approximately equal to 1
cm. The initial longitudinal distribution was uniform. For
most of our simulations, we used a 40 cm long bunch with
hard edges. The initial energy spread was zero. According
to the operational experience with multi-cusp ions sources,
sources of this type typically produce an energy spread of
a few eV’s, yielding a relative energy spread of ∼ 10−4.
Because of its small value, the initial energy spread was
completely neglected in the simulations.

Beam instability/fragmentation

Simulations of the beam dynamics in SIR show that the
space charge force causes fast beam fragmentation. This
break-up is accompanied by a fast growth of the energy
spread. Figure 4 shows formation of droplet-like clusters

for three different beam intensities. The machine optics
was set in the isochronous regime in these simulations.

Figure 4: Beam breakup for three different peak inten-
sities: 5, 10, and 20 μA. The ”bare” machine optics is
isochronous. Each frame contains a projection of the bunch
charge density on the median plane for a given turn and in-
tensity. The velocity of bunches is directed from the top of
the figure to the bottom. The horizontal side of each frame
corresponds to x while the vertical side is along the bunch
length. The size of each frame is 5×40 cm.

Fig. 5 shows evolution of the linear particle density in
the central part of the bunch for a peak current of 10 μA.
The linear charge density is shown for turns 7, 11, and 15.
Fig. 6 shows the FFT spectrum of the profiles shown in
Fig. 5.

Fig. 7 shows the logarithm of the amplitude of five dif-
ferent harmonics as a function of the turn number. All the
curves with an only exception of the harmonic with the
wavelength λ = 3 cm show an exponential growth start-
ing from turn 1 up to turn 11 or 12. After turn 12, the
growth saturates. The harmonic with λ = 1.5 cm exhibits
the highest growth rate. The curve corresponding to λ = 3
cm starts growing after turn 5 and does not exhibit satu-
ration below turn 15. Fig. 8 shows the growth rate for the
mentioned above harmonics. Also, Fig. 8 shows the growth
rate for four different peak intensities: 5, 10, 15 and 20 μA.
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Figure 5: Linear particle density profiles for turns 7, 11,
and 15. The peak beam current was 10 μA. The average
level was subtracted. Only the central ±15 cm part of a 40
cm long bunch is shown. The charge density is in arbitrary
units.
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Figure 6: Spectrum of linear charge density for turns 7, 11,
and 15 shown in Fig. 5.

Scaling with the beam current

First, we simulated the beam dynamics in the
isochronous SIR optics. The slip factor in the SIR model
was +2 · 10−4. It was adjusted specifically to match the
measured SIR slip factor. Fig. 9 shows the growth rate for
four different peak intensities: 5, 10, 15 and 20 μA, similar
to those shown in Fig. 8 but normalized on the beam cur-
rent. The normalized curves practically overlap in the re-
gion λ=1.5 cm and are close to each other in other regions.
Thus, Fig. 9 demonstrates that the growth rate of the in-
stability scales practically linearly with the beam current.
This is expected if the effect of the transverse space charge
force is included (see Eq. 10). In the case of the classical
negative mass instability, when only the longitudinal SC
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Figure 7: Logarithm of the amplitude of harmonics with
λ=0.6, 0.75, 1, 1.5, and 3 cm as a function of the turn num-
ber. The harmonic with λ = 1.5 cm exhibits the highest
growth rate.
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Figure 8: Amplitude growth rate for harmonics with the
wavelength λ=0.6, 0.75, 1, 1.5, and 3 cm. The growth rate
shown for four different peak intensities: 5, 10, 15 and 20
μA.

field is included, the growth rate should be proportional to
the square root of the peak current, which contradicts the
simulations and experimental data described below. Also
note that that observed growth rate significantly exceeds
the growth rate, which would result from the constant slip
factor +2 · 10−4. Table 2 shows the maximum negative
mass instability growth rate calculated using the constant
slip factor ηs0 = 2 · 10−4.

To simulate the beam dynamics below the transition the
distance between SIR dipole magnets was increased by 9
cm that yielded a slip factor of -0.04. In this optics, the
beam with a peak current of 5 μA exhibited no instability
behavior all the way up to the maximum number of sim-
ulated turns (100). The other three simulated cases with
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Table 2: Amplitude growth rate of the harmonic λ=1.5 cm
observed in simulations and calculated assuming the con-
stant slip factor ηs0 = +2 · 10−4

I0 (μA) τ−1 (Turn−1) τ−1 (Turn−1)
With SC No SC

ηs = +2 · 10−4

5 0.15 0.02
10 0.29 0.028
15 0.43 0.034
20 0.55 0.038
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Figure 9: Amplitude growth rate for harmonics with the
wavelength λ=0.6, 0.75, 1, 1.5, and 3 cm normalized on
the peak beam current. The normalized growth rate shown
for four different peak intensities: 5, 10, 15 and 20 μA.

the beam peak current equal to 10, 15 and 20 μA exhibited
the instability and clustering. Fig. 10 shows the amplitude
growth rate of the harmonic with λ=1.5 cm as a function
of the beam current for the optics with the negative slip
factor and the fit y = 0.028x

√
1 − 7/x. Also, Fig. 10

shows the amplitude growth rate for the isochronous case
and the linear fit y = 0.028x. The good agreement be-
tween the simulated growth rates and the fits confirms that
the formulae presented above correctly predict the depen-
dence on the beam current, indicating the correctness of the
proposed physical model. Additionally, Fig. 10 shows the
growth rates directly calculated from (10) and (12). The
incoherent space charge tune shift used to calculate theo-
retical growth rates was estimated numerically from the fit
y = 0.028x

√
1 − 7/x and Eq. (11). According to Fig. 10,

equations (10) and (12) predict growth rates approximately
60% higher than those observed.

EXPERIMENTAL STUDIES OF BEAM
DYNAMICS IN SIR

In this section, we present results obtained in experi-
ments conducted at MSU in 2003-2004. The experimental
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Figure 10: Growth rate of the harmonic with λ=1.5 cm for
the isochronous optics and the optics with the negative slip
factor -0.04. The simulated data is fitted with correspond-
ing fits: y = 0.028x and y = 0.028x

√
1 − 7/x. Addi-

tionally, growth rates calculated directly from Eq. (10) and
(12) are shown.

studies of the beam dynamics in SIR were conducted in the
isochronous regime. The SIR slip factor ηs0 was set to al-
most zero and measured by the time of flight technique that
yielded ηs0 = +1.7 · 10−4.

To quantify experimental results we counted the num-
ber of peaks of the longitudinal charge density, sometimes
referred to as clusters. The density peaks were defined
relatively to a chosen level of the initial charge density.
This observable provided us with the following informa-
tion: a) when modulation of the longitudinal charge den-
sity reached a given level and b) what was the size of
charge density peaks. Unfortunately, this observable gave
us only limited amount information omitting many details.
Observing evolution of the beam spectrum, for example,
could give us better insight into the beam dynamics. How-
ever, this paper presents the original experimental results
unchanged.

Comparison of simulation results and experimen-
tal data

Fig. 11 shows the simulated and measured number of
linear charge density peaks as a function of turn number.
The threshold at which density perturbations were counted
was set to 50% of the initial density level. In the figure,
simulation and experimental results were overlaid on top of
each other for three different beam intensities. The simula-
tion data shows an average number of peaks corresponding
to 14 different randomly seeded distributions. The width
of the curves corresponds to two standard deviations of the
number of peaks. The experimental data shows the result
of processing of 100 distributions for each turn. According
to the figure, the simulation results agree remarkably well
with the experimental data.

WGA30 Proceedings of Hadron Beam 2008, Nashville, Tennessee, USA

Beam Dynamics in High-Intensity Circular Machines

162



Figure 11: Simulated and experimentally measured num-
ber of linear charge density peaks vs. turn number. Exper-
imental and measured data closely overlap.

Scaling with the beam current

Figure 12 shows the measured number of peaks as a
function of turn number for three different beam intensi-
ties. The data is shown as a function of the product of turn
number and beam intensity. The overlap of the curves cor-
responding to different beam intensities confirms linear de-
pendence of the instability growth rate on the beam current.

Figure 12: The number of peaks of the linear charge den-
sity as a function of the product of turn number and beam
intensity shown for three different peak intensities: 5, 10,
and 20 μA.

Scaling with the bunch length

Figure 13 shows evolution of the measured number of
peaks for three different bunch lengths. If the number of
peaks is divided by the initial bunch length, all the three
curves practically overlap. This indicates that the instabil-
ity happens throughout a bunch that contradicts our original
expectation that clustering should have slowly propagated
from the ends inside the bunch. This result also shows that

the size of clusters that form as a result of the instability
does not depend on the bunch length.

Figure 13: The number of peaks of the linear charge density
for three different bunch lengths: 20, 40, and 80 cm. The
breakup almost does not depend on the bunch length.

CONCLUSIONS

The proposed model of the space charge driven instabil-
ity explains the observed and simulated beam behavior in
SIR at and below the isochronous regime with a reasonable
accuracy, especially considering the simplistic nature of the
analysis presented in the paper. The described model has
to be extended to include relativistic effects in order to pre-
dict the effect of the instability in large scale, high energy
machines. Additionally, the Landau damping caused by the
incoherent energy spread has to be included in the model.
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