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Abstract

Scaling laws of the emittance growth factor (EGF) for a
beam crossing the 6th order systematic space-charge reso-
nances and the random 4th order resonance driven by oc-
tupoles are obtained by numerical multi-particle simula-
tions. These scaling laws can be used in setting the min-
imum acceleration rate, and the maximum tolerable reso-
nance strength for the design of non-scaling fixed-field al-
ternating gradient (FFAG) accelerators.

INTRODUCTION

The discovery of strong focusing principle [1] in the
1950’s revolutionized the design of high energy accelera-
tors and led to the construction of the Alternating Gradi-
ent Synchrotron (AGS) in the Brookhaven National Lab-
oratory. Based on the strong focusing principle, the Mid-
west University Research Association (MURA) proposed
the concept of the Fixed-field alternating gradient accel-
erators (FFAGs) in the 1950’s [2], but the community fa-
vored a higher energy accelerator and constructed the zero-
gradient-synchrotron (ZGS) in Argonne National Labora-
tory. Recently the FFAG idea has been revived as high
beam-power is in demand. The beam pulse repetition rate
in an accelerator is essentially determined by the ramping
rate of the pulsed magnetic guide-field and the achievable
accelerating voltage in rf cavities. The FFAGs have an ad-
vantage over conventional synchrotrons owing to the fact
that the guide-field is constant so that the repetition rate
can be made considerably higher up to kHz.

Nonlinear resonances are important to all strong focus-
ing accelerators. The betatron and synchrotron tunes are
thus maintained constant in order to avoid major reso-
nances. The FFAG accelerators that maintain constant be-
tatron tunes during the accelerating cycle require a large
magnet aperture with high nonlinear magnetic fields. For
example, the 150-MeV FFAG in Japan has a radial beam
excursion from 4.4 to 5.3 m in an accelerating cycle from
12 MeV to 150 MeV, where the betatron tunes are νx ∈
(3.69, 3.80) and νz ∈ (1.14, 1.30) [3]. The design that
keeps the betatron tunes nearly constant is called the scal-
ing FFAG accelerators

To overcome the complexity and the size of the FFAG
magnets, the betatron tunes are left to vary as the beam en-
ergy increases. Such designs are called non-scaling FFAGs
[4]. The non-scaling design has been considered as a fa-
vorable candidate for the acceleration of the muon beams,
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where the tune ramp rate can be high because of its small
rest mass. Recently, the non-scaling FFAG has been con-
sidered as proton drivers for neutrino factories, muon col-
liders, and other applications. For example, Ruggiero sug-
gested to use three concentric FFAGs as a proton driver to
replace the Brookhaven AGS [5] for reaching a final beam
power of more than 10 MW. For each FFAG, the beam
closed orbit has a radial excursion of less than 18 cm dur-
ing the acceleration cycle. The betatron tunes vary from
νx,z = (40.0, 38.1) to (19.1, 9.3) during acceleration. As
shown in Fig. 1, the ramping cycle will cross both the sys-
tematic 4th and 6th order resonances, 4νx = P , 4νz = P ,
2νx + 2νz = P , 6νx = P , 6νz = P , 4νx + 2νz = P , and
2νx + 4νz = P , where P = 136 is the periodicity of the
lattice.
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Figure 1: Tune diagram of FFAGs proposed by Ruggiero [5] to
replace the Brookhaven AGS. Notice that the tunes of the FFAGs
ramp from (νx, νz) = (40.0, 38.1) to (19.2, 9.3) crossing the
systematic 4th and 6th order resonances.

For the proton driver in the non-scaling FFAG design,
the betatron tune-ramp rate is approximately given by

Δνx,z

Δn
∼ − νx,z

β2E

ΔE
Δn

, (1)

where β is the relativistic velocity factor, νx and νz are
the horizontal and vertical betatron tunes, E is the beam
energy, and ΔE/Δn is the energy gain per revolution,
which depends essentially on the achievable rf voltage in
the rf cavities. During the acceleration cycle, the beam mo-
tion encounters many resonances. The beam quality is an
important issue as systematic and random resonances are
crossed.
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Recently, Lee pointed out that the systematic nonlin-
ear resonances driven by the self space-charge force may
cause substantial emittance growth when the resonances
are crossed [6]. He demonstrated a simple scaling property
for the emittance growth across the 4th order space-charge
resonance. A later article by Lee et al. shows that para-
metric linear and nonlinear resonances driven by random
field errors, although correctable, can also lead to emit-
tance growth depending on how fast these resonances are
crossed [7].

The emittance growth of sextupolar resonances have
been studied in the past [8]. This paper will investigate the
emittance growth when crossing the systematic 6th order
resonances and the parametric 4th order resonances driven
by random nonlinear magnetic fields. We would like to
establish scaling laws for these resonances. Given a space-
charge tune shift and a resonance strength, we wish to ob-
tain the minimum resonance crossing rate so that emittance
growth remains tolerable. In particular, unlike the approx-
imation used in Refs. [6, 7], the space-charge force in a
bi-Gaussian beam is used in this study.

THE MODEL

Our investigation bases mostly on multi-particle sim-
ulations. The accelerator lattice used in our study is
made of 24 FODO cells, where each FODO cell is
composed of a focusing quadrupole and a defocusing
quadrupole separated by dipoles for completing a closed
orbit for a synchrotron. Examples of synchrotrons made
of FODO cells are the Fermilab Booster, the Alternat-
ing Gradient Synchrotron (AGS) in Brookhaven National
Laboratory and the AGS Booster. The superperiodic-
ity of our model is 24. Four-by-four transfer matri-
ces are employed for each period from a D-magnet to
the next F-magnet and from the F-magnet to next D-
magnet, thus completing a FODO cell. Thus the beta-
tron phase space coordinates are transported by the trans-
fer matrices MF→D(βx,D, βz,D, βx,F, βz,F, ψx, ψz), and
MD→F (βx,F, βz,F, βx,D, βz,D, ψx, ψz) [6, 7, 9]. Typical
betatron functions are βx,F = 40 m, βz,F = 8.3 m, at
the center of the focusing quadrupole and βx,D = 6.3 m,
βz,D = 21.4 m at the center of the defocusing quadrupole.
The dispersion functions are Dx,D = 2.54 m and Dx,F =
4.5 m at the mid-point between two D and two F magnets
respectively. The betatron tunes will be varied according to
the requirement of the simulations.

The transverse distribution is assumed to be bi-Gaussian
all the time. At the end of each revolution turn, the trans-
verse rms beam radii and the position of the beam center
are computed from the multi-particle phase space distri-
bution. The transverse rms emittances are obtained from
each superperiod. The information is used to compute the
space-charge force, which is applied at each F-magnet and
D-magnet in the succeeding revolution turn. This proce-
dure has the advantage that the noise in the calculation of
the radii is smoothed out in one turn, so that the number of

macro-particles, usually 2000, used in the simulation need
not be too large. The Gaussian-distribution assumption
is certainly not self-consistent. However, this assumption
simplifies the space-charge force and speeds up the simu-
lations tremendously.

Space-Charge Force

Since the emittance growth rate is usually much faster
than a synchrotron period, this justifies the performance of
only 2D simulation for a slice of the beam at the longitudi-
nal bunch center. For a beam with linear particle densityN
and bi-Gaussian charge distribution

ρ(x, z) =
Ne

2πσxσz
e−x2/2σ2

x −z2/2σ2
z , (2)

with σx,z being the rms horizontal and vertical beam radii
including contribution coming from momentum dispersion,
the transverse 2D space-charge potential is

Vsc(x, z) =
Ksc

2

∫ ∞

0

exp
[
− x2

2σ2
x+t − z2

2σ2
z+t

]
− 1√

(2σ2
x + t)(2σ2

z + t)
dt,

(3)
where

Ksc =
2Nr0
β2γ3

(4)

is the space-charge perveance, r0 is the particle classical ra-
dius, and β and γ are the relativistic parameters. In the sim-
ulation, we set the bunch intensity with NB particles and
an rms bunch-length σs to obtain N = NB/

√
2πσs. The

space-charge force on each particle is obtained by Hamil-
ton’s equation. Thus each beam particle passing through a
length Δs experiences a space-charge kick

Δx′

Δs
= −∂Vsc

∂x
= Fx,sc,

Δz′

Δs
= −∂Vsc

∂z
= Fz,sc. (5)

It is straightforward to demonstrate that Fx,sc and Fz,sc

can be expressed analytically in terms of the complex er-
ror function. Unfortunately, the application of the analytic
expression is cumbersome, because it exhibits an apparent
singularity when σx = σz . We have found out a way to
avoid the singularity and other divergence of the analytic
expression.

We expand the space-charge potential in Taylor series in
order to study the systematic space charge resonances:

Vsc(x, z) = −Ksc

2

{[
x2

σx(σx + σz)
+

z2

σz(σx + σz)

]

− 1
4σ2

x(σx + σz)2

[
2 + r

3
x4 +

2
r
x2z2 +

1 + 2r
3r3

z4

]

+
1

72σ3
x(σx + σz)3

[
8 + 9r + 3r2

5
x6 +

3(3 + r)
r

x4z2

+
3(3r + 1)

r3
x2z4 + +

8r2 + 9r + 3
5r5

z6

]
+ · · ·

}
, (6)
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with r = σz/σx. The first term inside the curly brack-
ets represents the linear force, which gives rise to linear
space charge tune shift. The second and the third terms
drive the 4th and 6th order resonances. It is not possible,
however, to truncate the expansion just up to the order of
resonances that we wish to study. This is because the trun-
cated space-charge force is accurate only for particles close
the beam center and it will increase without limit for parti-
cles far away. However, results of our simulation show that
the emittance growth in crossing a systematic resonance
depends essentially on the harmonic content of one of the
Taylor series terms.

SYSTEMATIC 6TH ORDER RESONANCE

If we inject protons at the rate of 4 × 1011 protons per
turn, 100-turn injection implies 4×1013 particles in the ac-
celerator. The parameters of our simulation model are set
at harmonic number h = 84, circumference C = 474.2 m,
and the bunching factor B = C/(h

√
2πσs) = 2.0. Ac-

tually, the space charge effect essentially depends on the
parameter BNB or on the maximum linear space-charge
tune shifts, but not on NB and B separately. The injected
protons are bi-Gaussian distributed with initial horizon-
tal and vertical normalized rms emittances of εN,rms =
8.33×10−6 πm or simply 8.33μm. To study the systematic
space charge resonances for an accelerator with 24 super-
periods, the betatron tunes must cross νx = 4 and νz = 4.
We choose the initial bare betatron tunes as νx0 = 4.25 and
νz0 = 4.45. Since we are interested only in emittance in-
crease in crossing the resonance, the kinetic energy of the
beam particles is kept constant at 1 GeV during the track-
ing, while the betatron tunes are allowed to ramp starting
from some specific turn according to some specific ramping
rate so that they become νx0 = 3.69 and νz0 = 3.89 at turn
1600. The emittances at turn 1600 are read and are divided
by the initial emittances to give the emittance growth fac-
tors (EGFs). Since we study the effects of the space-charge
driven systematic resonances, all random fields errors and
nonlinear fields in the magnets are turned off.

Resonance Strengths

After Floquet transformation, the terms in the space-
charge potential, Eq. (6), responsible for the 6th order reso-
nances can be expressed in terms of action-angle variables
in the form

Vsc,6(Jx, Jz, ψx, ψz, θ) ≈ − 1
R

∑
�

|G60�|J3
x cos(6ψx

−�θ + χ60�) − 1
R

∑
�

|G06�|J3
z cos(6ψz − �θ + χ06�)

− 1
R

∑
�,±

|G4±2�|J2
xJz cos(4ψx ± 2ψz − �θ + χ4±2�)

− 1
R

∑
�,±

|G2±4�|JxJ
2
z cos(2ψx ± 4ψz − �θ + χ2±4�),

where � is an integer, R is the radius of the accelerator
ring, and θ = s/R is the orbiting angle in the accelerator.
Here, |Gmn�| and χmn� are the amplitude and phase of the
resonance strength and they are computed by integrations
around the accelerator ring:

G60� =
1

5760π

∮
Kscβ

3
x(8σ2

x + 9σxσz + 3σ2
z)

σ5
x(σx + σz)3

exp [j(6φx − 6νxθ + �θ)] ds,

G06� =
1

5760π

∮
Kscβ

3
z(8σ2

z + 9σxσz + 3σ2
x)

σ5
z(σx + σz)3

exp [j(6φz − 6νzθ + �θ)] ds,

G4±2� =
1

384π

∮
Kscβ

2
xβz(3σx + σz)

σ3
xσz(σx + σz)3

exp {j[4φx ± 2φz − (4νx ± 2νz)θ + �θ]} ds,
G2±4� =

1
384π

∮
Kscβxβ

2
z (σx + 3σz)

σ3
zσx(σx + σz)3

exp {j[4φx

±2φz − (4νx ± 2νz)θ + �θ]} ds, (7)

where φx,z =
∫ θ

0
ds/βx,z are the Floquet phase advances.

These strengths are essentially the �-th Fourier amplitude
of the integrand function. After the injection process, these
resonance strength are evaluated every turn. During the
resonance crossing, the emittance growth can occur, and
the resonance strength can vary.

These resonant strengths depends on space charge
strength and the lattice parameters of the accelerator. We
can factorize the resonance strength into a factor that de-
pends on the space charge perveance, and another dimen-
sionless reduced resonant strengths gmn� as

Gmn� = gmn�
KscR

4ε3rms

, (8)

where εrms = εN,rms/(βγ) is the average of the unnormal-
ized rms horizontal and vertical emittances. For a round
beam,KscR/(4εrms) is just the linear Laslett space charge
tune shift parameter, and the reduced resonance strength
gmn� depends only on the lattice. In most of our study,
the reduced resonance strength does not change signifi-
cantly across a resonance, and the average reduced reso-
nance strength before and after crossing a resonance is used
to characterize the resonance. In fact, the reduced reso-
nance strength is independent of the beam emittance for a
round beam.

In our model, space-charge kicks are applied at the cen-
ter of the focusing and defocusing quadrupoles, i.e. two
kicks per superperiod. In one betatron period, there are
about 8 to 12 space charge kicks depending on the betatron
tunes. This may be small, however the harmonic content
of these kicks are calculated according our tracking model,
and the effect of the space charge kicks should depends
essentially on the harmonic content, i.e. these reduced res-
onant strengths for the systematic resonances 6νx = P ,
6νz = P , 4νx + 2νz = P , and 2νx + 4νz = P are accord-
ingly calculated by taking the Fourier integrals of the ac-
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celerator lattice at the kick locations. Since the beam distri-
bution is populated statistically, the horizontal and vertical
emittances will be slightly different in different runs, these
resonant strengths will be slightly different accordingly.
One important feature of our model is that we can adjust
the magnitudes of the reduced resonant strengths as neces-
sary by assigning different values for the betatron functions
βx,z at space-charge kick locations. In a uniform focusing
accelerators, one has βx,F = βx,D = βz,F = βz,D, and
g60P = g06P = g42P = g24P = 0. Note that the model
employed here is independent of the radius of the acceler-
ator ring.

This work does not include momentum width, which
has small effect for large emittance beams. When momen-
tum width is included, the separation of lattice dependency
from space charge is less exact. However, the factoriza-
tion of the resonance strength into the space charge and
reduced resonance strength factors should remain good be-
cause

√
βxεrms � Dxσδ . For example, the beam pa-

rameters in Ref. [5] has σxβ =
√
βxεx ∼ 8.5 mm, and

σxδ = Dx(Δp/p) ∼ 1.6 mm. Thus the effective horizon-

tal rms width is σx =
√
σ2

xβ + σ2
xδ ∼ 8.7 mm The mo-

mentum width becomes important near the transition en-
ergy [10].

Tracking

Tracking has been performed with 2000 macro-particles
for 1600 turns. Figure 2 shows a sample tracking with 100-
turn injection of 4.0 × 1011 per turn and bunching factor
B = 2 at bare tunes νx0 = 4.25 and νz0 = 4.45.

Starting from turn 200, the tunes are ramped downwards
linearly at the rate of 0.0004 per turn until they reach 3.69
and 3.89 at turn 1600. The top-left plot shows both the bare
tunes and space-charge depressed tunes as functions of turn
number. We note that the horizontal tunes (black curve)
of small amplitude particles has encountered 6νx = P
(P = 24, the lattice periodicity) resonance in the first 200
turns but show little or no emittance growtn in the bottom-
left plot for the evolution of normalized rms emittances.
The systematic resonances 6νx0 = 24 and 6νz0 = 24 are
crossed at turns 825 and 1325, respectively. In the plot
Δνsc,x and Δνsc,z represent the linear horizontal and ver-
tical space-charge tune shifts. After injection and before
resonances set in, the linear space charge tune shifts are
Δνsc,x = 0.310 and Δνsc,z = 0.290. The bare hor-
izontal and vertical tunes cross the 6th order resonances
at turns 825 and 1325 respectively. The horizontal and
vertical emittances start to grow about 150 turns before
the corresponding resonance crossing, and level off after
that. As the emittances begin to grow, the beam size in-
creases and the linear space-charge tune shifts are reduced.
The reduced resonance strengths, |g60P | = 0.00181 and
|g06P | = 0.00172, were evaluated before the resonance
crossing. The plots on the right show the particle distribu-
tion in the transverse phase spaces at turns 820 and 1270.
Six islands are clearly seen in the phase space plots. Fur-
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Figure 2: (Color) Top-left: After 100-turn injection at 4.0×1011

per turn at bunching factor B = 2, bare tunes are ramped down-
wards from (νx0, νz0) = (4.25, 4.45) starting from turn 200
to (3.69, 3.89) at turn 1600 (ramp rate −0.0004 per turn). Sys-
tematic resonances 6νx0 = P and 6νz0 = P (P = 24 is the
lattice periodicity) are crossed at turns 825 and 1325, respec-
tively. Bottom-left: Emittance growths are observed when the
resonances are crossed. Red and black dots are respectively the
vertical and horizontal emittances. Right: Horizontal and vertical
phase-space distributions at turns 820 and 1270 showing the 6th
order resonances.

thermore, the phase space plots indicate that the phases of
g60P and g06P differ by π. Some decoherence is apparent
for the horizontal phase space at turn 820 at the top-right
plot. When crossing the 6th order resonance, particles are
resonantly pushed outwards iforming 6 islands, and grad-
ually decohere into a ring encircling the inner core. The
space charge force becomes small at large distance from the
center of the beam. Since we set our aperture very large at
500 πmm-mrad, no particle loss has been observed in our
simulations. In a realistic accelerator with a smaller aper-
ture, particle loss can occur.

We also note that the betatron tunes pass through two
sum resonances at 4νx + 2νz = 24 and 2νx + 4νz = 24.
The emittance growth due to these two sum resonances is
smaller. Our simulations show that these sum resonances
can produce about 15% of the total emittance growth at a
small acceleration rate.

The reduced resonance strengths of these sum reso-
nances for a normal lattice, where βxF � βxD, βzD �
βzF , βxF ≈ βzD, and βxD ≈ βzF are about 40% of those
of 6νx = 24 or 6νz = 24. For a lattice with smooth be-
tatron amlitude functions, resonance strengths of all reso-
nances becomes small as shown in Eq. (7). If the integrands
in Eq. (7) are nearly constant, their Fourier amplitudes of
a nonzero harmonic is small. For example, if the inte-
grands of the resonance strengths for 4νx + 2νz = 24 and
2νx + 4νz = 24 resonances are nearly constants, the kicks
at the focusing quadrupole location is nearly cancelled by
the kick at the defocusing location.
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Figure 3: (Color) Horizontal emittance growth factors and across
the 6th order systematic resonances 6νx0 = P (P = 24, the
lattice periodicity) are plotted as functions of tune-ramp rate for
various reduced resonance strengths g60P . At a lower resonance
strength (red circles), obtained by seting βxF ≈ βzF and βzF ≈
βzD , the resonance strengths 6νx = 24 and 4νx + 2νz = 24 in
Eq. (7) are equal. The effect of 4νx + 2νz resonance can produce
a stronger effect on the EGF, and thus shown the fluctuation in the
red circle symbols.

Scaling

The tune-ramp rate is increased gradually from
|dνx0,z0/dn| = 0.0004 by increasing the start-ramp-turn-
number in steps of 50 in each simulation until the tune-
ramp rate reaches 0.0112 with start-ramp-turn-number
1550. For each tune-ramp rate, the resonance strengths can
be varied by assigning different values of betatron func-
tions at the space-charge kicks. For example, when the
betatron amplitude functions are identical at both the fo-
cusing and the defocusing quadrupole locations, the lattice
is a uniform focusing model, and the space charge kicks
at the focusing and defocusing locations cancel each other.
Thus the space-charge resonance strengths are varied ac-
cordingly. The space-charge tune shifts, the zeroth har-
monics of the space-charge kicks, are maintained constant
in this resonance strength variation.

The emittance growth factor (EGF), defined as the ratio
of emittances after and before the crossing of a resonance,
is computed for each simulation. Equal initial horizontal
and vertical emittances are assumed. The results for 100-
turn injection with EGF versus tune-ramp rate for crossing
the resonance 6νx0 = P are shown in Fig. 3.

When the EGF is larger than 1, Fig. 3 shows the power-
law relationship between the EGF and the tune-ramp rate,
i.e., EGF∼ |dν/dn|−a where a is a constant that may
depend on the resonance strength and the space-charge
tune shift. Concentrate on one of these reduced resonance
strength, for example the one with |g60P | = 0.00181, the
black data points in Fig. 3. Extend the linear relationship
in the log-log plot to intercept the tune-ramp rate axis at

Figure 4: (Color) Top: Critical tune-ramp rates across the sys-
tematic 6th order resonance 6νx0 = P (P = 24) are plotted as
functions of reduced resonance strength |g60P | for various linear
space-charge tune shifts or bunch intensities. Bottom: The crit-
ical tune-ramp rate |dν/dn|c divided by (Δνsc)

2 of the top plot
shows scaling properties. The scaling property is shown in Eq. 9.

EGF= 1 and denote the intercept as the critical tune-ramp
rate, which gives |(dνx/dn)c| ≈ 0.034 ± 0.002. At this
critical tune-ramp rate, we find EGF≈ 1.1, i.e. a 10%
increase in emittance, considered to be acceptable. At a
10% emittance growth, the phase space has halo surround
its outer edge. At a lower resonance strength (red marks),
obtained by seting βxF ≈ βzF and βzF ≈ βzD, the reso-
nance strengths 6νx = 24 and 4νx + 2νz = 24 in Eq. (7)
are equal. The effect of 4νx +2νz resonance can produce a
stronger effect on the EGF, and thus shown the fluctuation
in the red circle symbols. Nevertheless, the trends of EGF
vs |dν/dn| is similar.

The critical tune-ramp rate is computed in the same way
for all data belonging to each resonance strength. We find
that for linear space-charge tune shift Δνsc,x = 0.300, the
power in the power law assumes the value a = 0.66 at
|g60P | = 0.00181 and increases to a = 1.03 as the reso-
nance strength decreases to 0.00024. The increase in the
slope due to may have resulted from the combination of
6νx = 24 and 4νx + 2νz = 24 resonances.

Similar computations are carried out for different beam
intensities: 70-turn injection with bunch intensity NB =
33.3×1010 with Δνsc,x = 0.212, Δνsc,z = 0.211, and 50-
turn injection with bunch intensityNB = 23.8× 1010 with
Δνsc,x = 0.153, Δνsc,z = 0.152. Power law relation-
ships are also evident at these bunch intensities when the
EGFs are slightly larger than unity. The critical tune-ramp
rates are computed and plotted in the top plot of Fig. 4,
where the error bar in arises mostly from the uncertainty in
straight line-fitting of the power law and the uncertainty in
the intercept on the tune-ramp rate |dν/dn| axis in Fig. 3.
The lines in the top plot are drawn to guide the eyes.
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Figure 5: (Color) Comparison of the Emittance growth factors
for 2-kicks and 4-kicks in each FODO cell for two 6th order reso-
nances. Note that increasing the number of kicks does not change
the EGF.

The space charge resonance strengths are propor-
tional to Δνsc, and the number of turn that the beam
is under the influence of the resonance is Δn ≈
Δνsc/|dν/dn|. Thus the EGF should be proportional to
(Δνsc)2/|dν/dn|. The scaled critical tune-ramp rate, de-
fined as |dν/dn|c/(Δνsc)2, is plotted at the bottom of
Fig. 4 vs the reduced resonance strength. The scaling works
very well indeed. It seems that the critical tune-ramp rate
can be fitted by

∣∣∣∣dνdn
∣∣∣∣
c

≈ 65 g60P (Δνsc)2, (9)

shown as the dashed line in the bottom plot of Fig. 4.
The critical tune-ramp rate can easily be obtained once
the bunch intensity and 6th order resonance strengths are
given. These plots provide a guideline for the design of
FFAGs in order to avoid excessive emittance growths dur-
ing the crossing of the systematic 6th order resonances.

Four kicks per FODO cells

We also carry out calculation with 4-kicks per FODO
cell to check the validity of our argument that the emittance
growth is determined by essentially the resonance strength.
Figure 5 shows that the emittance growth factors for 4 kicks
and 2 kicks per FODO cell depends essentially on the res-
onance strength. Increasing the number of kicks in each
FODO cell does not affect the emittance growth factor.

Comparison with the 4th order systematic reso-
nances

The approximate space charge forces used in the simu-
lations of Ref.[6, 7] roll off too rapidly at large distance
from the center as shown in the Appendix of Ref.[7]. Since
emittance growth occurs mainly for large amplitude par-
ticles, we would like to use our exact space charge force
to re-evaluate the EGF and deduce the critical tune-ramp

Figure 6: (color) The critical tune-ramp rate versus strength g04P

of 4th order resonance 4νz0 = 24 of Refs. [6] and [7] is expressed
in |dν/dn|c/(Δνsc)

2 vs the reduced resonance strengths. The
dashed line is a curve fit of 8.4 g04P exp(31g04P ). it appears
that |dν/dn|c appears to be larger than the fitted curve at smaller
resonance strengths. At this moment, we do not have explanation.

rate vs the resonance strength. Figure 6 shows the scaled
critical tune-ramp rate, |dν/dn|c/(Δνsc)2, vs the reduced
resonance strength in red, blue and magenta colors for the
4νx = P and 4νz = P resonances.

In order to compare with our earlier results, we multiply
the scaled critical tune-ramp rate of Ref. [6, 7] by a fac-
tor of 2 and plot the results in Fig. 6. This means that
a sharper roll-off in the approximate space charge force
under-estimate the critical tune-ramp rate by a factor of 2.
However, the scaling properties is still maintained. An ap-
proximate curve fit of the 4th order resonance critical tune-
ramp rate, shown as the dashed line in Fig. 6, is

∣∣∣∣dνdn
∣∣∣∣
c

≈ 8.4 (Δνsc)2 g04P exp{31g04P}. (10)

When g is small, the scaling law is linear. The scaling
laws of Eqs. (9) and (10) can be understood understood
as follows. First the effect systematic resonance strength
is proportional to g · |Δνsc|, where g is the reduced width.
Second, the number of turn to pass through a resonance is
|Δνsc/(dν/dn)|. The scaling laws indicate that the number
of turns to pass through a resonance for getting the same
EGF is nearly constant for each resonance. The exponen-
tial dependence of Eq. (10) awaits for explanation.

FOURTH ORDER PARAMETRIC
RESONANCES

Octupoles are often necessary to provide betatron tune
spreads for the Landau damping of unwanted transverse in-
stabilities. These octupoles are specially placed in the ac-
celerator ring to maximize tune spreads and minimize non-
linear effects. As a result, the periodicity of the ring will
be broken. Another source of octupole field comes from
random nonlinear errors in lattice magnets. They break the
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periodicity of the ring also. We add a single octupole in our
model accelerator ring at the D-magnet of the last period.

Resonance Strengths

The potential of the octupole fields is

V4(x, z) = − 1
4!
B3

Bρ

(
x4 − 6x2z2 + z4

)
, (11)

where B3 = ∂3Bz/∂x
3. After Floquet transformation, the

terms responsible for the 4th order resonances can be ex-
pressed in terms of action-angle variables in the form

V4(Jx, Jz, ψx, ψz, θ) ≈ − 1
R

∑
�

|G40�|J2
x cos(4ψx

−�θ + χ40�) − 1
R

∑
�

|G04�|J2
z cos(4ψz − �θ + χ04�)

− 1
R

∑
�,±

|G2±2�|JxJz cos(2ψx ± 2ψz − �θ + χ2±2�), (12)

where � denotes any integer. In above |Gmn�| and χmn�

are the amplitude and phase of the resonance strength and
they are computed by integrations around the accelerator
ring over all the octupole fields:

G40� =
1

96π

∮
B3β

2
x

Bρ
exp

[
j(4φx − 4νxθ + �θ)

]
ds,

G04� =
1

96π

∮
B3β

2
z

Bρ
exp

[
j(4φz − 4νzθ + �θ)

]
ds,

G2±2� = − 1
16π

∮
B3βxβz

Bρ
exp

{
j
[
2φx ± φz

−(2νx ± 2νz)θ + �θ
]}
ds. (13)

These resonance strengths can be made dimensionless by
introducing the reduced resonance strengths

gmn� = Gmn�εrms (14)

where εrms is the rms emittance of the beam. Across a thin
octupole of length Δs, the change in horizontal and vertical
divergences are given by

Δx′ = 1
6S4(x3 − 3xz2),

Δz′ = 1
6S4(z3 − 3x2z), (15)

where the octupole strength is defined as S4 = B3Δs/Bρ
and Δs is the length of the octupole. For our test beam
that has a kinetic energy of 1 GeV, S4 = 50 m−3 corre-
sponds to a pole tip field of 0.035 T if the octupole phys-
ical aperture is of radius 5 cm and length 1 m. With
the octupole placed at a defocusing quadrupole location
with βx = 6.3 m, βz = 21.4 m, the resonance strengths
at εrms = 4.61 × 10−6 πm (normalized 95% emittance
εN = 50 × 10−6 πm) are |g40�| = 3.03 × 10−5, |g04�| =
3.50 × 10−4, |g2±2�| = 1.03 × 10−4. Since |g40�| is much
smaller than |g04�| we study the emittance growth in pass-
ing through 4νz = � resonance. It is difficult to study
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Figure 7: (Color) Top-left: The bare tunes (dashed lines) and
the tunes depressed by linear space charge (thick dots) vs the
turn number for a beam with 70-turn injection at 3 × 1011

per turn. The linear space charge tune shift parameters are
(Δνsc,x, Δνsc,z) = (0.167, 0.165). The bare tunes are ramped
downwards from (νx0, νz0) = (6.975, 6.875) at turn 100 at the
rate of |dνx0,z0/dn| = 0.0005. Octupole driven parametric reso-
nances 4νz0 = 27 and 2νx0 +2νz0 = 27 are crossed at turns 350
and 450, respectively. Either half-integer resonance 2νz0 = 13 or
a fourth order resonance 4νz0 = 26 is crossed in the vertical plane
at turn 850. Bottom-left: Emittance growths are observed when
the resonances are crossed. Heavy beam loss is also observed to
correlate the emittance reduction. Right: vertical phase-space dis-
tributions at turn 300 (top) and 780 (bottom), demonstrating the
crossing of 4νz0 = 27 and 2νz0 = 13, respectively.

the sum resonance for emittance growth, because they can
cause particle loss. We can easily avoid the difference res-
onance 2νx − 2νz = �. Only the resonance 4νz0 = � will
be studied here.

Tracking

Because particle motion is much more sensitive to ex-
ternal magnetic field near a resonance, our tracking is per-
formed with 5000 macro-particles for 1200 turns. A larger
number of macro-particles are used here because a smaller
number of macro-particles is more sensitive to the loss and
action increment of a few particles. This can lead to spu-
rious emittance growth. Figure 7 shows a sample tracking
with 70-turn injection of 3×1011 protons each at bare tunes
νx0 = 6.975 and νz0 = 6.875.

Starting from turn 100, both tunes were ramped down-
ward linearly at the rate of 0.0005 per turn. The top-left plot
shows both the bare tunes (dashes) and the space-charge
depressed tunes (thick dots) as functions of turn number,
while the bottom-left plot show the evolution of normalized
rms emittances. The octupole strength was S4 = 20 m−3.
There is a vertical emittance growth near the 4νz0 = 27
resonance at turn 350. This is verified by the vertical phase
space plot (of turn 300) at the top-right with the four arm-
like structure. When the betatron tunes move downward,
the beam particles encounters the resonance tori. Large
amplitude particles are squeezed along the resonance sep-
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aratrix outward to a large amplitude. The reduction of the
vertical emittance at the bottom-left plot of Fig. 7 after the
passing of the 4νz0 = 27 resonance arises from the particle
loss.

The next resonance encountered is the 2νx0 +2νz0 = 27
sum resonance at turn 450. Then the vertical hits the half-
integer resonance 2νz0 = 13 at turn 800, which is verified
by the vertical phase space plot (of turn 780) at the bot-
tom right, where we see particles streaming out in two di-
rections. However, the half-integer stopband driven by the
octupoles is much weaker than that driven by the random
quadrupole errors. There is another 4th order sum reso-
nance 2νx0 + 2νz0 = 26 at turn 950 followed by another
half-integer resonance 2νx0 = 13 at turn 1050. The 4th
order resonance in the horizontal plane 4νx0 = 27 should
occur near turn 550, but it has almost been invisible, prob-
ably a result of the small horizontal betatron function at the
octupole location (βx,D = 6.3 m vs βz,D = 21.4 m).

Note that the resonances crossed and the emittance
growths always occur some revolution turns before the
turn numbers suggested by the bare tunes. For example,
4νz0 = 27 predicts a resonance at turn 350, but the ac-
tual emittance growth peaks some 30 turns before that.
The shifting of the resonance position comes from the de-
pressed tunes of the space-charge force. Figure 7 shows
that the resonance position of a lower order resonance will
be more determined by the space charge depressed tunes.
The references of Fig. 7 by the bare tunes are intended to
where the effect of a resonance occurs.

Unlike the resonances driven by the space charge force,
beam loss of 6.2% occurs during the 1200-turn tracking.
The space charge force decreases when the actions of a par-
ticle are larger than 3σx,z. On the other hand, the perturb-
ing force increases with amplitudes for nonlinear magnetic
fields. In the simulation, when the action exceeds a certain
pre-determined value, the particle is defined as lost and is
removed from the simulation. The computation of emit-
tances might become inaccurate in the presence of parti-
cle loss. Particles outside a core are pushed outward by
the nonlinear force and become lost leaving behind a core
that might have emittances that are rather small. This ex-
plains why emittances appear to decrease in the emittance
plot in Fig. 7 after passing a resonance. We will include
only those simulations where no particle loss is recorded
across the resonance for the emittance growth. Thus we
cannot study simulations with octupole strength larger than
S4 ≈ 50 m−3, and we will study the scaling property of the
4th order parametric resonance 4νz = � resonances. Our
results should be applicable to 4νx = � resonance as well.

There are three parameters in the study of emittance
growth crossing the octupole driven resonance 4ν z0 = 27:
the beam intensity, the octupole strength, and the tune-
ramp rate. For the beam intensity, we study simulations
of 70-turn injection with 1× 1011, 2× 1011, 3× 1011, and
4×1011 protons per turns. They correspond to bunch inten-
sity 8.33×1010, 16.7×1010, 25.0×1010, and 33.3×1010.
The bunching factor and the beam kinetic energy have al-
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Figure 8: (Color) Emittance growth factors across the 4th order
resonances 4νx0 = 27 driven by an octupole in the presence of
space charge as functions of tune-ramp rate for various octupole
strengths. Data encircled involve particle loss and are discarded
in the critical tune-ramp-rate analysis.

ways been chosen to be B = 2 and 1 GeV. At the nor-
malized 95% emittances of 50×10−6 πm, the correspond-
ing linear space-charge tune shifts are (Δνsc,x, Δνsc,z) =
(0.056, 0.052), (0.112, 0.103), (0.167, 0.165), and (0.223,
0.207), respectively. The octupole strength is varied from
S4 = 10 m−3 to 50 m−3. The tune-ramp rate is varied
from |dν/dn| = 0.00003 to 0.006.

Scaling

The results for a sample of simulations with Δνsc =
0.165 are shown in Fig. 8 as log-log plots. Similar to the
systematic resonances discussed above, we observe linear
relationship between the EGF and tune-ramp rate for each
reduced resonance strength when the EGF is slightly larger
than unity. The EGF saturates at smaller tune-ramp rates
due either to beam loss or the limited the resonance is-
lands in phase space area for small octupole magnetic field.
When the betatron tunes move downward, the resonance
islands move inward in phase space and sqeeze particles
outward in phase space. When the betatron tunes are lower
than the resonance line 4ν = �, resonance islands disap-
pear for S4 > 0 cases.

When the EGF is less than 3, the power law is still nearly
valid, i.e. EGF∼ |dν/dn|−a, where a ∼ 0.8 to 1.0 depends
slightly on the resonance strength and the space-charge
tune shift. We draw a straight line in the EGF vs |dν/dn|
log-log plot in the power law regime, and the line cuts the
|dνz/dn|-axis to obtain the critical tune-ramp rate. In gen-
eral at these critical tune-ramp rates, the EFG is less than
1.2. For each bunch intensity, the critical tune-ramp rate
is plotted in Fig 9 as a function of the resonance strength
|g04�|. The error bars reflect the uncertainty of the linear
lines of the plots and their intercepts on the |dνz/dn|-axis.

The number of turns that the beam is under the influence
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Figure 9: (Color) Top: Critical tune-ramp rates across the oc-
tupole driven 4th order resonances 4νz0 = 27 are plotted as
functions of reduced resonance strength g04� for various bunch
intensities. Dashed lines are drawn to guide the eyes. Bottom:
|dν/dn|c/(Δνsc)

0.8 for the octupole driven 4th order resonances
4νz0 = 27 vs the reduced resonance strength g04�. The dashed
line is a linear fit to the data.

of the resonance is approximately Δn ∼ Δνsc/|dν/dn|.
Thus the EGF is proportional to Δνsc/|dν/dn|, and thus
we expect |dν/dn|c ∼ Δνsc. We find that the critical tune-
ramp rate divided by (Δνsc)0.8 gives a good scaling prop-
erty for the four simulation-data sets, shown at the bottom
of Fig. 9. The dashed line in the bottom plot of Fig. 9 is

∣∣∣∣dνdn
∣∣∣∣
c

≈ 23 g40� (Δνsc)0.8, (16)

which is approximately 2.6 times more stringent than that
of the fourth order space charge resonances as shown in
Eq. (10). Figure 9 provides useful guidelines for the tolera-
ble octupolar resonances in accelerators that their betatron
tunes must pass through the fourth order resonances. For a
given linear space-charge tune shift of the beam and given
random octupole strengths, the minimum rate of crossing
the 4th order resonance can be determined for a tolerable
emittance growth.

Particle trapping in islands and Beam loss

Since we study only tune ramp downward, the sign of
octupole resonance strength plays an important role in res-
onance growth and beam loss. The 4th order resonances oc-
curs only in one direction in the betatron tune space. In our
study with S4 > 0, the resonance condition can only exist
at νz − �/4 ≥ 0. As the betatron tune is ramp downward,
large amplitude particles encounter the tori of resonance
and the separatrix of the 4th order resonance sqeezes par-
ticles out to a large amplitude. As the tune is further ramp
downward, these islands move inward and get smaller in
size. Once the bare tune passes 4ν0 = �, the phase space
is resonance free. Unless the resonance strength is large,

beam loss is unlikely, and the emittance growth is limited
as shown in Fig. 8.

On the other hand, if the sign of the resonance strength
G04� is changed, the resonance condition exists only at
νz − �/4 ≤ 0. As the betatron tune is ramped down, res-
onance occurs at νz = �/4 at the center of the bunch (the
space charge tune shift can change this picture slightly).
As the tune is ramped further downward, the islands move
outward, increase in size, and trap particles with it. These
trapped particles will eventually be lost at the dynamic
aperture [12].

CONCLUSIONS

For a non-scaling FFAG, the beam motion may cross
many betatron resonances. In this paper, we improve our
simulation model by using the space charge potential for
Gaussian-beam without round beam approximation. We
then performed simulations to study emittance growths on
crossing the systematic 6th order resonances driven by the
space-charge force. Just as in the investigation in Refs. [6]
and [7], we find power law works between the EGFs and
tune-ramp rates for the 6th order resonance 6νx0 = P . A
critical tune-ramp rate is thus determined by EGF curve
cutting the tune-ramp rate axis. At the critical tune-ramp
rate, the emittance growth is typically less than 10%. The
critical tune-ramp rate vs the space-charge tune shift and
the reduced resonance strength shows a simple scaling
property given by Eq. (9). A similar scaling law also ex-
ists for the 4th order systematic space charge resonances.
The scaling law can serve as a design guide for non-scaling
FFAGs so that emittance growths across these resonances
can be kept within toleration.

For a lattice similar to that of the Fermilab Booster with a
linear space-charge tune shifts of ∼ 0.30, the critical tune-
ramp rates is dν/dn ∼ 0.006 per turn. This means that,
when the particle kinetic energy is 1 GeV and the betatron
tune is 4, the energy gain per revolution should be of the
order of 2.2 MeV, which is rather large for the low fre-
quency rf systems. For this reason, phase advance per cell
should not hit π

2 for the 4th order systematic resonance and
not cross π

3 for the 6th order systematic resonance during
the FFAG ramp cycle. The 6th order resonances are in-
trinsically weaker than the 4th, e.g., the maximum reduced
strengths of g60P and g06P are typically less than 1/20 of
the maximum g40P and g04P shown in Fig. 6, the critical
tune-ramp rate is smaller as shown in Fig. 4. However, the
minimum tune-ramp rate may still be challenging in the
FFAG proton driver design.

For the parametric 4th order resonance 4νz0 = �, we
also find linear scaling relations in the log-log plot of EGF
versus tune-ramp rate. High intensity beams are severely
limited by nonlinear resonances driven by external mag-
netic field errors. These resonances can cause beam loss.
For example, if the reduced resonance strength the para-
metric 4th resonance is |g04�| ≤ 3.5 × 10−4, which is a
relatively large number, and the linear space-charge tune
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shift is Δνsc,z = 0.25, then the corresponding critical tune-
ramp rate should be about ∼ 2 × 10−3 per turn in order
to limit emittance growth. In fact, since the tune ramp
rate for the FFAG is always downward, the sign of g04�

or g40� is very important. All parametric resonances with
detuning depends on the signs of detuning parameter and
the resonance strength [11]. If the resonance occurs in the
range ν − 1

4� > 0 and betatron tune is ramped downward,
emittance will grow but the resonance islands are moving
inward to the center of the beam, and they disappear af-
ter passing through the resonance. However, if the res-
onance occurs in the range of ν − 1

4� < 0 and betatron
tune is ramped downward, the resonance islands move out-
ward in action, and the beam particles are trapped in res-
onance islands and can be extracted. Since the parametric
resonances driven by error magnetic fields can cause beam
loss, stopband correction must be implemented in order to
minimize beam loss and emittance growth. It would be in-
teresting to carry out experimental measurements of EGF
for various resonances driven by the space charge potential
and magnet errors. Experimental results can be used to ver-
ify our scaling law and provide design-guidelines for future
high power accelerators.
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