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Abstract

In this paper we give an overview on space charge driven
response of particle motion in high intensity beams primar-
ily based on self-consistent particle simulation. We focus
on transverse space charge effects, including the possibility
of longitudinal-transverse exchange. The resonant nature
of these phenomena is discussed as well as possibilities for
coherent response. A number of these mechanisms can be
equally relevant in the context of linear as well circular ac-
celerators.

INTRODUCTION

The importance of space charge in high intensity beams
has primarily two sources: the most common and obvi-
ous effect is the incoherent shift of betatron frequencies
due to space charge, which may have the effect of pushing
particles into the stop-band of a lattice-induced resonance
(external nonlinearity); space charge can, however, be a
source of resonance itself due to its time dependence (mis-
matched beams) and/or the nonlinear nature of the space
charge force (space charge structure resonances) as well as
a self-consistent collective response (space charge driven
instabilities). The development of beam halo - important
for loss predictions - depends on this complex dynamical
behavior, moreover on the six-dimensional initial distribu-
tion function as the initial “seed”. One usually assumes
decoupled longitudinal and transverse phase space distri-
butions, which may not always be the case in real beams in
linear accelerators in particular and is difficult to measure.
The complexity of these phenomena therefore makes it of-
ten difficult to give sufficiently accurate loss predictions.
We proceed by discussing some of these mechanism in the
order of increasing complexity and refer to linear and cir-
cular accelerators whenever appropriate.

INCOHERENT AND COHERENT
EFFECTS WITH EXTERNAL

NONLINEARITIES

The most obvious effect of space charge is the shift
and spread of single particle tunes. For a uniform (KV-
distribution) coasting beam space charge leads to a down-
wards shift of the zero-intensity tune, with a spread around
the shift due to amplitude-dependent betatron frequencies
for non-uniform distributions (WB, Gaussian etc).
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Note that in linear accelerators external nonlinearities
are usually ignored as they normally do not occur with
sufficient periodicity - different from internal space charge
nonlinearities -, hence this section focusses on circular ac-
celerators. In the presence of such an external nonlinearity,
for example an octupole, the space charge shift/spread not
only causes a shift and - for sufficiently large spread - a
broadening of the resonance condition. In self-consistent
simulation one can find coherent phenomena - depending
on the distribution function -, which are absent in single
particle models. To further discuss the space charge
phenomena in this case it is necessary to treat the coasting
beam separately from the bunched beam case.

Coasting Beam

For the coasting beam approximation of a circular
accelerator we use a set of MICROMAP- simulations in a
smooth focusing lattice with an externally applied single
octupole as discussed in Ref. [1]. The findings of this study
show that the “simple” resonance condition 4Qx = 25
does not adequately account for a detailed picture. Results
have indicated that the actual response due to the octupole
depends significantly on the initial distribution function
as well as the coherent response of the beam. Here we
compare KV with WB and Gaussian (full tail) distributions
noting that the KV case is mostly of academic interest,
but it reveals in an accentuated way some of the important
mechanisms. The KV response after 1000 turns is shown
in Fig. 1 as function of the bare machine tune Qx. We
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Figure 1: 2D simulation of KV distribution with ΔQx =
−0.045 and octupole as function of bare machine tune,
showing self-consistent and “frozen-in” models (after 1000
turns) (from Ref. [1]).
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first discuss the rms emittance growth for a “frozen-in”
space charge electric field, where the initial values are not
updated, hence the response is entirely incoherent. The
absence of response for a distance of the bare machine
tune from the resonance line less than 0.045 reflects the
incoherent space charge tune shift of the initial KV-beam.
The stop-band width of ≈ 0.01 is due to the finite octupole
strength. The maximum emittance growth is only < 6%,
which is much less than the 25% growth obtained in the
same case without space charge. The reason for this is
the detuning effect of space charge: growing amplitudes
weaken the space charge, and the resonance condition gets
lost.

The self-consistent simulation, instead, shows a very dif-
ferent behavior with two separate peaks. The broader peak
is a direct result of the fourth order resonance, although
its height exceeds significantly (more than five times) the
maximum “frozen-in” response - a pronounced coherent
effect. The perhaps unexpected spike at Qx = 6.27 can-
not be explained as direct result of the octupole, but is as-
sociated with an envelope instability further discussed in
section . Such an envelope instability requires a fractional
phase advance of the envelope of half an integer relative
to the lattice periodicity as was shown in Refs. [2]. This
condition is analogous to the envelope instability in linear
accelerators, where a single-particle phase advance above
90◦ per focusing period may induce a half-integer unstable
envelope as was first shown in Ref. [3]. Here the “structure
period” is absent in the smooth first order lattice, but stems
from the local perturbation induced by the relatively strong
octupole. The latter occurs at only one position on the cir-
cumference, hence the total phase advance of particles per
turn is exceeding 6 × 360◦ + 90◦.

The rms equivalent waterbag distribution of Ref. [1]
shows that the envelope instability peak is unchanged, but
the fourth order resonance effect is visibly reduced (Fig. 2).
We explain this as a weakening of the coherence induced by
the finite tune spread, which is a kind of Landau damping
effect. For the Gaussian distribution the picture is still a dif-
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Figure 2: 2D simulation of waterbag distribution (same pa-
rameters as Fig. 1) (from Ref. [1]).

ferent one. The much broadened single-particle spectrum
of tunes typical for a Gaussian fully overlaps the position of

the expected envelope instability frequency, which is there-
fore effectively “Landau-damped”. The much broadened
direct response curve is only slightly enhanced compared
with the “frozen-in” model (Fig. 3), hence there is an al-
most complete suppression of any coherent resonance ef-
fect. There is also a region of about 0.2% loss, which is
practically identical for the self-consistent and “frozen-in”
model, and is caused by the Gaussian tails.
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Figure 3: 2D simulation of Gaussian distribution (same pa-
rameters as Fig. 1, note the enlarged vertical scale) (from
Ref. [1]).

Bunched Beams

The behavior of bunched beams in the presence of
an external nonlinearity is quite different from that of
coasting beams due to the migration of single particle
tunes across the tune footprint. This is caused by the space
charge effect varying along the bunch with the synchrotron
motion, which must be added to a similar effect due to
finite chromaticity and momentum spread. For sufficiently
large synchrotron frequency this may have a phase mixing
effect - similar to that of the above discussed coasting
beam Gaussian distribution - and suppress the possibility
for coherent space charge response in a coasting beam.
One may therefore expect a primarily incoherent response
for bunched beams.

A detailed analysis of the combined effect of space
charge, an external octupole and synchrotron motion has
been studied in an experiment at the CERN Proton Syn-
chrotron [4]. Long term emittance growth and beam loss
have been compared with computer simulation and ex-
plained successfully in terms of the cumulative effect of
many crossings of particles across the resonance. A simi-
lar experiment was repeated recently with an external sex-
tupole at the SIS18 of GSI with similar findings [5]. The
simulation model for these long-term simulations (> 105

turns) has been using a “frozen-in” space charge under the
assumption that coherent response is absent.
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MISMATCH DRIVEN RESONANCES AND
HALO

A purely space charge driven resonant mechanism com-
mon to linear and circular accelerators is the well-known
halo formation as a result of an envelope mismatch. Such
a mismatch is usually the result of an injection error or a
sudden structure change. It has been originally discussed
in a simplified core-test particle (CTP) model, where a 2:1
(parametric) resonance between the mismatch envelope os-
cillation and individual particles was described as a major
source of amplitude growth and halo formation [6]. The
resonant force was assumed to be the space charge force of
the oscillating beam core.

Due to space charge tune depression single particles in-
side the core oscillate slower than half the (also space
charge shifted) envelope frequency, therefore only parti-
cles initially outside of the core (in the tails of the distri-
bution function) have a chance to satisfy the required 2:1
frequency relationship between core and particle. There-
fore quantitative halo predictions always suffer from a poor
knowledge of the initial tails, moreover, the oscillating core
may reveal a larger spectrum of frequencies to be taken
into account (see Ref. [7] and a more recent and detailed
study in Ref. [8]). Further practically important issues are
the self-consistent evolution of an rms mismatched beam,
which may lead to a coherently driven break-up of the ini-
tial core distribution as first discussed in Ref. [9]; as well
as important anisotropic effects due to different frequencies
and/or emittances between the transverse and transverse-
longitudinal degrees of freedom, which may give rise to
unbounded halo [10].

All these mismatch induced processes have in common
that the electrostatic field energy contained in the mismatch
oscillation is “thermalized” by the halo evolution [11].
The term “thermalization” is actually misleading, since the
halos discussed here usually extend significantly beyond
Gaussian tails. It can be shown that even for realistic lat-
tices of linear accelerators the - then anisotropic field en-
ergy - gives an upper bound for the rms emittance growth
by the induced halo [10],[12]. The actual radial extent of
the halo as well as the time-scale over which it forms de-
pends, among others, on whether the starting distribution
already has a tail or not; it may take very long for a well-
truncated initial distribution. Also it is largely unexplored
what the effect of realistic correlations between different
phase planes in the initial distribution are (keeping in mind
that they are hard if not impossible to measure).

SPACE CHARGE STRUCTURE
RESONANCES AND INSTABILITIES

In this section we assume a sufficiently well rms-
matched beam in a perfectly linear and periodic lattice, ei-
ther circular or linear. In the absence of intrabeam scatter-
ing or noise the remaining source of emittance or amplitude
growth is space charge itself.

A significant effect on the emittance requires a resonant
action, which only occurs if a proper resonance condition
is fulfilled. As space charge self-interaction is not a single-
particle effect, such a resonance condition cannot simply
be described just by a single particle structure resonance
condition of the kind nQ = N , where N is the number of
super-periods or equal cells per turn (in a linac correspond-
ingly σ = 360/n. As was shown in Ref. [2] this problem
has the following complexity:

• a coherent frequency shift is needed to express the
space charge coherent interaction and corresponding
shift of the stop-band

• the driving force may be present in the initial beam for
a sufficiently nonuniform initial distribution (structure
resonance)

• alternatively the driving force may grow exponentially
from an initial noise level (structure instability)

To demonstrate these mechanisms we refer to the ex-
ample of a ring lattice with 12 identical triplet focussing
cells in Ref. [2], where initially an rms matched waterbag
distribution was used and an emittance ratio εx/εy=4. In
the self-consistent simulation the bare machine tunes have
been kept fixed at Q0x = 4.9 and Q0y = 3.4, corre-
sponding to a phase advance per cell of σ0x = 1470 and
σ0y = 1020. With increasing intensity an rms emittance
growth in y was found in the region, where the rms value of
the space charge depressed tune in y was 2.7 < Qy < 2.95
(810 < σy < 88.50) as shown in Fig. 4. Two distinct mech-
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Figure 4: Saturated r.m.s. emittance effect after 200 turns
in an ideal linear lattice with (Q0x,Q0y)=(4.9,3.4) as func-
tion of Qy . Also shown is 10x(λ-1) of the theoretical enve-
lope instability growth factor λ (fromRef. [2]).

anisms are expected to play a role in this stop-band. The
first one is a structure envelope instability, which can be
described by the following resonance equation using rms
values of the space charge depressed tunes

2Qy + Δω2 = 12/2, (1)

or in linac notation:

σy + Δω′
2 = 900. (2)
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It is characterized by a phase advance of 1800 of the un-
derlying envelope mode per focusing period, hence a 1:2
(half-integer) relationship between envelope mode and lat-
tice periodicity. The envelope instability was first studied
in Ref. [3] and extensively reviewed - with a number of
possible ramifications - in Ref. [13]. Note that we have
added a (positive) “coherent resonance shift” in Eqs. 1,2 to
account for the fact that the center of the stop-band of this
instability does not simply occur at the resonance condi-
tions 2Qy = 12/2 or σy = 900 (with rms tune values), but
it is shifted downwards. The theoretically expected stop-
band for the particular lattice is obtained by solving the
KV envelope equations for the growth factors of the un-
stable envelope modes. As shown in Fig. 4, the particular
linear lattice with zero-current phase advance per cell of
σ0y = 1020 shows an envelope instability in the region
2.68 < Qy < 2.84, or 80.40 < σy < 85.20with an associ-
ated envelope growth per cell by a factor λ.

The remaining part of the stop-band is due to the struc-
tural fourth order resonance, which can be written as

4Qy + Δω4 = 12, (3)

or
σy + Δω′

4 = 900 (4)

in linac notation. Here the driving force is the fourth or-
der term in the space charge potential due to the initial
WB, modulated by the periodic focusing structure. Again,
a coherent tune shift is employed to demonstrate the down-
wards shift of the center of the stop-band. The fourth order
nature in this part of the stop-band is shown in the phase
space plot of Fig. 5 for Qy = 2.86 (in Fig. 4) at an early
and a more advanced stage.
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Figure 5: Phase space projections in y for fourth order
structural response and Qy=2.86 after turn 2 and 30 (from
Ref. [2]).

SCALING LAWS FOR SPACE CHARGE
STRUCTURE RESONANCES

It was recently shown that for at least two candidates of
space charge structure resonances, the emittance exchange
“Montague resonance” and the fourth order structure

resonance, a common feature exists in terms of very
similar scaling laws predicting the rms emittance growth
for complete crossing of the stop-band.

Montague Resonance

The Montague resonance is a difference resonance
driven by the zeroth harmonic of the fourth order term
of the space charge potential. The condition for the
stop-band center can be written with a coherent tune shift
Δω2,2, which is negative for εx > εy, and positive for
εx < εy [14]:

2Qx − 2Qy + Δω2,2 = 0. (5)

In linacs the emittance difference is usually between lon-
gitudinal and transverse, hence the appropriate resonance
condition is written as (again a negative coherent shift for
εz > εx):

σz − σx + Δω′
2,2 = 900. (6)

Following Ref. [15] the starting point for a scaling law
is an analytical expressions for the stop-band width, which
was derived in Ref. [14]. Writing the stop-band in terms of
a spread of the horizontal tune, the result is:

Θ =
3
2
(
√

εr − 1)ΔQx, (7)

where ΔQx is the incoherent space charge tune spread de-
fined as maximum tune spread of a Gaussian beam, i.e.
twice the KV-equivalent tune shift; εr is the initial ratio
of εx and εy (here assumed ≥ 1 without loss of generality).

For fixed ΔQx the emittance growth after crossing is
found inversely proportional to the number of turns/cells
per crossing, except for large exchange, where the emit-
tances go into saturation towards full exchange. This is
shown in Ref. [14] for a crossing over the range 5.15 ≤
Q0,x ≤ 5.27 enclosing the stop-band, while Q0,y is kept
fixed at the value 5.21. For this crossing “from below” the
final emittances after crossing the band at variable number
of turns is shown in Fig. 6.

This finding, together with the observation that the num-
ber of turns needed for a certain emittance exchange is in-
versely proportional to ΔQx, whereas the stop-band width
is directly proportional to ΔQx, explains that the result of a
crossing can be written in terms of the “scaling parameter”
S, with Q̇ the change of tune per turn:

S ≡ (ΔQx)2

Q̇
. (8)

According to the simulation results of Ref. [15] this leads
to a scaling law of the form

Δεy

εy
= α2,2(

√
εr − 1)2S, (9)

where α2,2 ≈ 0.5.
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Figure 6: Final emittances after crossing the stop-band
at variable number of turns (ΔQy = −0.105) (from
Ref. [14]).

Fourth Order Structure Resonance

Following Ref. [15] the fourth order structure reso-
nance for downwards crossing follows a similar scaling,
but not with the same power in S:

Δεy

εy
= α0,4S

n. (10)

In most simulations the power was found to be n = 2,
except for small emittance growth, where a lower power
seemed more appropriate. α0,4 has to be determined for a
given lattice by fitting to numerical results.

Fourth order and sixth order structure resonances in
rings have been applied to non-scaling FFAG accelerators,
where a number of them are crossed due to the large tune
swing [16]. It has also been shown that they may even by
excited by lattice errors [17].

The relevance to linacs has been demonstrated by a re-
cent simulation study of 3D bunches in a drift tube linac,
where the fourth order structure resonance is also found
with a similar scaling law [18].

CONCLUDING REMARKS

We have summarized work showing that transverse
space charge may lead to a diversity of resonant effects
beyond the “trivial” incoherent tune shift, which could be
equally important for linear as well as circular accelera-
tors: mismatch resonant behavior; the possibility of struc-
ture resonances only driven by space charge; the appear-
ance of envelope instabilities; coherent shifts describing
the shift of resonance stop-bands; and the existence of com-
mon scaling laws for resonance crossing. In practical appli-
cations involving significant space charge all these effects
may appear in combination with each other. Furthermore,
structurally driven space charge effects may be a result of
the regular lattice structure, but also - though weaker - of

errors in the lattice. This overview cannot claim complete-
ness, and many questions are left open. The role of the 6D
distribution function, including in particular possible cor-
relation effects between the planes, is one of these topics
that might deserve further study.
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