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Abstract 
At reduced chromaticity, transverse coherent 

oscillations rapidly develop in the Fermilab Booster at the 
end of bunching process [1]. The growing mode was seen 
with almost zero fractional tune, and the growth time was 
extremely short and hardly sensitive to the beam intensity. 
This instability can be explained as an excitation of a 
head-tail mode when its frequency crosses a nearest 
multiple of the revolution frequency. This coherent 
synchro-betatron resonance (CSBR) can be driven by 
non-zero dispersion and/or its derivative inside cavities. 
Model of the CSBR is developed; calculations for the 
Booster yield growth rate close to observations. Methods 
to suppress CSBR are discussed. 

INTRODUCTION 
Booster [1] is a fast cycling proton synchrotron 

operating at 15 Hz; its main parameters are presented in 
Table 1.  

Table 1: Booster parameters 

Energy 0.4 – 8 GeV 
Transition energy 5.1 GeV 
Total number of particles 4.5·1012 
Circumference 474.2 m 
Harmonic number, q 84 
Betatron tunes, Qx/Qy 6.82 /6.81 
RF voltage 0.7- 0.9 MV 
Injection type H-, 11 turns 
 

Large chromaticities are used to avoid transverse 
instability. That negatively affects the dynamic aperture 
and the beam lifetime. For studies, both chromaticities 
were reduced, and data were taken from 4 channel digital 
scope with sampling time 0.4 ns and total recording time 
~700 turns. As a result, a coherent instability at injection 
was recorded in details. Off-line processing of these data 
included marking boundaries for each bunch, subtracting 
closed orbit offsets from the differential signal, and 
obtaining density and dipole moment distributions. 
Analysis revealed the following features: 

• The instability starts at the end of beam 
bunching, when the RF voltage achieves about 
half of its maximum. It continues during about 
30-100 turns. 

• The amplitude of the coherent oscillations grows 
to few mm.  

• Coherent betatron motion in all bunches has the 
same structure and betatron phase.  

• Turn-by-turn betatron phase advances are almost 
zero, as if the tunes are equal to integers (but 
they were far from that). 

• Amplitude growth is almost insensitive to the 
beam intensity.  

An example of this coherent growth is presented at Fig. 1.  
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Figure 1: Measured dipole moment distributions for x- 
(top) and y-planes (bottom) over bunch length for every 
5-th turn (turns from 93 to 113); beam intensity 4.5·1012. 
 
The described above features compel to seek some 
collective synchro-betatron resonance as an explanation 
of this coherence. Indeed, with a growing RF, head-tail 

modes cross resonances, when their tunes sbl lννν +=  

cross integers. Since high space charge requires bare 

tunes bν stay slightly below integers (Δν~0.1) and 

synchrotron tune is large (Δνs~0.05), this is possible at 
not so high resonance orders l. A model of CSBR is 
developed below, with a driving force generated by non-
zero dispersion in cavities. 
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RESONANCE DYNAMICS 
CSBRs were first mentioned and studied by Sundelin 

[2], assuming the resonance is driven by transverse wake 
in RF cavities. The localized wake-driven CSBRs were 
later analyzed in Ref. [3,4]. It was claimed in Ref. [5] that 
CSBRs can be driven by non-zero dispersion inside the 
cavities, although no quantitative model was suggested. 
Single-particle SBR driven by dispersion in RF cavities 
was treated in Ref. [6,7]. A quantitative model showing 
how this dispersion drives coherent SBR was presented in 
our paper [8], and is mostly followed below.  

When a mode is at resonance, nl sbl =+= ννν , any 

dipole perturbation leads to its growth. To understand 
main features of the phenomenon, a longitudinal 
distribution is taken here as the air-bag one (hollow 
beam); i.e. all the particles have the same synchrotron 
amplitude r₀, they are homogeneously distributed over the 
synchrotron phases φ, the longitudinal offset is z = 
r₀cosφ. The Vlasov equation for the distribution function 
ψ can be conventionally written as 
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Here s is time in units of length, x=qcosθ and p=-(q/β)sinθ 
are the betatron coordinate and momentum (angle), 
similar values with tilde are their perturbations, and v is 
the beam velocity. It can be assumed here, that the 
perturbation kicks are localized at a single point jss = ; 

the final result can be obtained by summation over j. Such 
periodic perturbations can be presented as 
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Betatron kicks px ΔΔ ,  are generated by non-zero 

dispersion D and its derivative D′ in a cavity, every time 
a particle passes through it:  
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Here α and β are the Twiss parameters in the cavity, k is 
the RF wave number and 0max / ppΔ  is an amplitude of the 

RF kick in the cavity in terms of the relative longitudinal 
momentum offset. According to the conventional 
perturbation approach, a solution of the Vlasov equation 
is presented as a sum of a steady state distribution and a 
perturbation: ψψψ ~

0 += . For the air-bag distribution: 
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Substituting this linearized expansion in the Vlasov 
equation, neglecting the second-order terms, and leaving 
only a resonant contribution, a time derivative for the 
mode amplitude is obtained: 
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where lJ (x) is the Bessel functions, and the summation is 

performed over all cavities. This equation describes a 
linear growth of the mode amplitude driven by the 
external resonant force F. It was assumed, that the mode 
stays exactly on the resonance – that is why the force F 
does not depend on time. If the mode is slightly detuned 
from the resonance, 00 ≠−+≡ΔΩ ωωω nl sbl

, the force has 

to be modified by an oscillating factor: 
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When RF grows, the synchrotron frequency changes, 
leading to the time–dependent frequency offset: 

v/)( sls sl ω&=ΔΩ . Substituting this to the above equation 

leads to the total amplitude growth after resonance 
crossing:  
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where T=C/v is the revolution time. 
Now, several comments can be added to this result. 

First, the amplitude growth appears to be independent on 
the beam intensity. In fact, the beam intensity has to be 
high enough to make CSBR possible. If intensity is so 
low that the space charge does not separate coherent and 
incoherent tunes, CSBR would not be seen due to strong 
Landau damping. Note also, that the betatron and 
synchrotron tunes here are coherent ones. 

Second, the entire growth is a sum of complex 
contributions from individual cavities. In principle, with a 
proper choice of amplitudes and phases, they may cancel 
each other. In the Booster, there are 9 pairs of adjacent 
cavities. At the beginning of bunching, the voltage of 
every cavity is almost as high as at maximum, but the 
phases of adjacent cavities differ by π, so the net 
longitudinal focusing is zero. Then, this so called 
‘paraphasing’ goes down to zero at the end of the bucket 
formation. Formulas above assume that all the cavities are 
in phase. Taking into account the paraphasing ±ψ in the 
adjacent cavities can be done by a substitution  
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Third, all the calculations above assume no x-y 
coupling in the beam optics. This assumption is not valid 
for the Booster, which stays close to the coupling 
resonance, and where coupling is strong. In this case, 
correct treatment should be based on the coupled 4D 
phase space Twiss parameters. Below, we still apply the 

 ___________________________________________  
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described uncoupled formalism to the Booster as a first 
approximation, and to see the significance of the 
phenomenon. To do that, we are using design optics with 
no coupling. 

Making calculations for such idealized Booster lattice, 
we found that the result is very sensitive to the degree of 
mutual compensation from the cavity pairs. Contributions 
of all the 9 cavity pairs are presented at Fig. 2. A resulting 
force appears close to a contribution of a single pair of 
cavities due to the assumed optical symmetry. 
Introduction of ~10% optical perturbation can increase 
the sum by a factor of 2. 
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Figure 2: Calculated complex contributions of 9 cavity 
pairs into the net driving force (arbitrary units). Every red 
dot shows contribution of a single pair in the complex 
plane. The net result is close to a single pair contribution. 

 
Calculations for the idealized Booster optics results in 

the amplitude growth of mm1bpm ≈Δ βA  comparable to 

the experimental observations of about 1-3 mm. 
Discussing CSBR with the authors, R. Baartman noted 

that RF asymmetry in the cavities can drive CSBR similar 
to dispersion. He found the RF asymmetry ~1% would 
matter as much as dispersion for the Booster [9]. We are 
estimating an upper limit on asymmetry for the Booster 
cavities as a much smaller number, so we exclude that as 
a source of CSBR for the Booster. 

SUPPRESSION OF CSBR 
A possible danger of CSBR is an excitation of high 

starting value for then impedance-driven instability. 
However, normally this does not happen in the Booster In 
this case, there is no reason to care about the Landau 
damping of CSBR since the Landau damping just 
transfers coherent oscillations into incoherent, what 
eventually occurs anyway. Even if exponential growth 
does not happen, CSBR is still detrimental, because of 

increase in emittance and possible particle loss. Several 
ways to suppress CSBR can be suggested. 

• The chromaticity ξ can be increased, reducing 

the driving force ξ/1∝  and the consequent 

emittance growth ξ/1∝ . 

• The bare tunes and chromaticities can be 
optimized to reduce the net emittance growth 
caused by all the crossed CSBRs.  

• To cross CSBR faster. This could be achieved, in 
particular, with introduction of 3rd RF harmonic, 
leading to increase of non-linearity in the 
synchrotron motion 0/ drd sω . 

• If there is some excess in RF power, it can be re-
distributed between all the cavities in more 
optimal way, so that contributions from different 
cavities in the driving force Σ cancel each other. 
The first item is presently used in Fermilab 

Booster to suppress the resonance. The second and 
third ones require more study. At the moment, the 
last item is looking as the most promising.  

SUMMARY 
• A model of CSBR is developed. 
• It is in agreement with observations in the 

Booster. 
• CSBR can lead to emittance growth and particle 

loss 
• Methods to suppress CSBR are discussed. 

The authors are thankful to R. Baartman and Y. H. Chin 
for discussions and references.  
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