A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Feinberg, G.

Paper Title Page
WGB15 Lattice Beam Dynamics Study at Low β for SARAF/EURISOL Driver 40/60 MeV 4 mA d&p Superconducting Linac 246
 
  • J. Rodnizki, B. Bazak, D. Berkovits, G. Feinberg, A. Shor, Y. Yanay
    Soreq NRC, Yavne
 
 

In this study we examine a lattice for the SARAF superconducting (SC) linac at the low velocity β range. The SC Half Wave Resonator cavities in the first cryostat have been optimized for a geometric β=0.09 and hence the β=0.0567 ions coming from the RFQ are mismatched. We developed a semi adiabatic tuning method for the low β side of the SC linac. The guidelines were derived from a study of two linac lattices that were considered for the SARAF 40 MeV proton and deuteron linac, extended up to 60 MeV for the low energy part of the EURISOL driver. Simulations were made using the TRACK and GPT codes. The lattices were tested for energy gain along the linac, emittance growth and acceptance. Further, error runs in GPT using a tail emphasis technique to enhance statistics by focusing on the bunch tail allowed us to examine compatibility of the lattices with hands-on maintenance requirements. We find our study relevant for other linacs that start with SC cavities right after the RFQ, such as SPIRAL2, and maybe IFMIF too, which are designed to start with similar β mismatch at the low β range.

 

slides icon

Slides

 
WGE16 The 40 MeV Proton/Deuteron Linac at SARAF 438
 
  • D. Berkovits, B. Bazak, G. Feinberg, I. Mardor, A. Nagler, J. Rodnizki, A. Shor, Y. Yanay
    Soreq NRC, Yavne
  • K. Dunkel
    ACCEL, Bergisch Gladbach
 
 

The Soreq Applied Research Accelerator Facility (SARAF) is built to be used for basic research, medical research, neutron based non-destructive testing and radio-pharmaceuticals development and production. The accelerator, designed and constructed by Accel Instruments GmbH, starts with a 5 mA, 20 keV/u ECR ion source. A LEBT transports the beam and matches it to a normal-conducting 4-rod RFQ. The RFQ bunches the beam at a frequency of 176 MHz 4 mA ions and accelerate the ions to 1.5 MeV/u. A 0.65 m long MEBT transports and matches the beam into the superconducting linac. The 20 m long linac is composed of six cryostats that contain a total of 44 half-wave resonators optimized for β0=0.09 and 0.15, which are kept at a temperature of 4.5 K by liquid helium. In order to achieve the dose rate criterion for hands-on maintenance, beam loss is limited to 1 nA/m. Extensive beam dynamics simulations, including error analysis with high statistics, indicate that beam loss will indeed be below the above mentioned criterion. Currently, Phase I of the SARAF linac, including the ion source, LEBT, RFQ, MEBT and the first SC cryostat, is installed on site and is undergoing commissioning.

 

slides icon

Slides