

Commissioning of the Delta Polarizing Undulator at LCLS

WFD01

Heinz-Dieter Nuhn for the Delta Project Team

Wednesday, August 26, 2015

H.-D. Nuhn[#], S.D. Anderson, R.N. Coffee, Y. Ding, Z. Huang, M. Ilchen,
Y. Levashov, A.A. Lutman, J. MacArthur, A. Marinelli, S.P. Moeller,
F. Peters, Z. Wolf, SLAC National Accelerator Laboratory (SLAC)
A.B. Temnykh, Cornell University (CLASSE)
G. Hartmann, J. Viefhaus, Deutsches Elektronen-Synchrotron (DESY)
J. Buck, European XFEL GmbH (XFEL.EU)
A.O. Lindahl, University of Gothenburg Department of Physics

WED01

We appreciate the opportunity to present our results at this conference!

Heinz-Dieter Nuhn

Circular Polarized FEL X-Rays at LCLS

X-ray beam polarization controllable from circulator through elliptical to linear

Delta Development

Cornell University Proof-of-Principle 0.3 m

A. Temnykh, Phys. Rev. ST Accel. Beams 11, 120702 (2008).

SLAC Prototype 1.0 m

Heinz-Dieter Nuhn

Delta Development

Cornell University Proof-of-Principle 0.3 m

A. Temnykh, Phys. Rev. ST Accel. Beams 11, 120702 (2008).

SLAC Prototype 1.0 m

Variable Phase Undulator for Polarization Control

-SLAC

Four independent quadrants of permanent magnets move longitudinally at fixed gap.

By sliding the quadrants it is possible to control the K from full to zero

and to have full control the polarization

SLAC

Delta Benefit Expectations (2012)

Short Term:

Add circular polarization capability to the current LCLS (in <u>afterburner configuration</u>).

Primary Photon Energy Range 0.28 - 2.0 keV

Long Term:

- Provide polarization control for the LCLS-II SXR line.
- Build future Delta x-ray FELs with full polarization control and full tunability under LCLS type alignment control.

Heinz-Dieter Nuhn

Delta 1.0-m Prototype (during assembly)

SLAC

1.0-m Prototype – Row Movement

For measurements plastic filler gauge was used. Measurement accuracy ~ 25 μ m. Nominal A-B dimension ~ 635 μ m.

ode: Pla	ner / vertical field		Dimensions are µm						
B,C,D =	0								
		A-B	B-D	C-D	A-C				
ference		1,397	597	1,334	635				
ode: Helical right									
D = 0	B,C = +8mm								
		A-B	B-D	C-D	A-C				
		1,359	699	1,270	762				
nange fro	om reference	38	-102	64	-127				
ode: Helical left									
D = 0	B,C = -8mm								
		A-B	B-D	C-D	A-C				
		1,334	762	1,207	762				
nange from reference		-64	165	-127	127				
ode: Planer / horizontal field									
B =0	B,C = -16mm								
		A-B	B-D	C-D	A-C				
		1,143	940	1,080	914				
nange from reference		-254	343	-254	279				
-									
А	В								
C	D								

Cł

1.0-m Prototype – Row Movement

For measurements plastic filler gauge was used. Measurement accuracy ~ 25 μ m. Nominal A-B dimension ~ 635 μ m

Much more rigid design required for 3.2-m Delta

Mode: Planer / vertical field			Dimensions are µm			
A,B,C,D = 0				•		
		A-B	B-D	C-D	A-C	
Reference		1,397	597	1,334	635	
Mode: Helical right						
A,D = 0	B,C = +8mm					
		A-B	B-D	C-D	A-C	
		1,359	699	1,270	762	
Change from reference		38	-102	64	-127	
Mode: He	lical left					
A,D = 0	B,C = -8mm					
		A-B	B-D	C-D	A-C	
		1,334	762	1,207	762	
Change from reference		-64	165	-127	127	
Mode: Pla	ner / horizontal fie	eld				
A,B =0	B,C = -16mm					
		A-B	B-D	C-D	A-C	
		1,143	940	1,080	914	
Change from reference		-254	343	-254	279	
А	В					

3.20- Delta Undulator Components (new design)

Structural Stiffness Controls Strong Magnetic Forces

Vertical Linear Field

Horizontal Linear Field

Franz Peters 7/24/2013

Will provide required micron-level reproducibility

Structural Stiffness Controls Strong Magnetic Forces

Vertical Linear Field

Horizontal Linear Field

Franz Peters 7/24/2013

Will provide required micron-level reproducibility

Quadrant Tuning

Delta Assembly Complete

Delta Field Mapping

Delta Field Mapping Result: Examples

Delta with Vacuum Chamber

Phase Shifter

Heinz-Dieter Nuhn

Heinz-Dieter Nuhn

Delta Undulator and Phase Shifter installed on U33

October 2014

SLAC

First Light Through Delta Undulator

- Commissioning with beam started on 10/14/2014
- Images show spontaneous radiation of linear and circularly polarized configuration at 9.2 keV.
- The observed patterns and intensities agree with calculations by
 - J. MacArthur.

SLAC

Delta in Regular Afterburner Configuration at 930 eV

Peak Current around 1.5 kA

- 42 µJ with Delta off
- 88 µJ with Delta on

FEL2015 Daejeon Korea, 23rd – 28th August 2015

First Phase Shifter Scan

LCLS Phase Shifter Scan 28-Oct-2014 18:24:34

Delta in Enhanced Afterburner Configuration at 710 eV

Reverse Taper

E.A. Schneidmiller, M.V. Yurkov, "Obtaining high degree of circular polarization at X-ray FELs via a reverse undulator taper", arXiv:1308.3342 [physics.acc-ph] Profile Monitor DIAG:FEE1:481 28-Jun-2015 22:40:12

• X-ray growth suppressed during reverse taper

510 µJ with Delta on

Peak Current increased above 4 kA

FEL2015 Daejeon Korea, 23rd – 28th August 2015

Reverse Taper Simulation

Regular Taper

FEL2015 Daejeon Korea, 23rd – 28th August 2015

Reverse Taper Simulation

Reverse Taper Simulation

TOF Polarimeter – DESY / EXFEL

- 16 channels (max.) ⇒ Angular resolution
- Analysis of dipole photoemission
 Linear polarization

TOF Polarimeter Displays

Online Polarization Information

Courtesy of Anton Lindahl

Online Polarization Information

SLAC

The degree of linear polarization as measured by the TOF polarimeter can be expressed in terms of the Stokes parameters

Scheme	E _{circ} /E _{lin}	P _{lin}	P _{circ}	Ε _{xray} (μJ)
Crossed Polarization			low	50ª
Regular Afterburner	up to ~4	0.5	0.87	50 ^a
Reverse Taper	up to ~15	0.3	0.96	480 ^b
Split Beams	≳100		~1	220 ^b

with

 $s_0^2 \ge s_1^2 + s_2^2 + s_{3.}^2$

 $P_{lin} \propto \sqrt{\frac{s_1^2 + s_2^2}{s_0^2}}$

 $s_0 = I_x + I_y$

 $s_1 = I_x - I_y$

 $s_2 = I_{45^\circ} - I_{-45^\circ}$

 $s_3 = I_{RCP} - I_{LCP}$

The equal sign applies if the light is fully polarized. Only in this case can the degree of circular polarization be deduced from the absence of linear polarization

$$P_{circ} = \frac{|s_3|}{s_0} = \sqrt{1 - \frac{s_1^2 + s_2^2}{s_0^2}} = \sqrt{1 - P_{lin}^2}$$

The actual degree of circular polarization has since been confirmed using x-ray magnetic circular dichroism (XMCD) ^aPeak Current about 1500 A; ^b Peak Current above 4000 A

Operational Polarization Record

LCLS-II SXR and HXR Component Layouts Space for 3 Delta Undulators

- Increased period length (39 mm) to match SXU segments
- Larger transverse block dimensions to reach SXU $K_{max} = 5.48$
- Improved carrier structure for increased stability and improved tuning.
- Water-cooled vacuum chamber.

Summary

- Adding the polarization control Delta undulator to the LCLS provides for the first time circularly polarized ultrafast x-ray pulses for experimental use.
- The final performance characteristics: nearly 100% degree of circular polarization and pulse intensities in excess of 0.2 mJ exceed expectations.
- Advanced modes of two colors with two polarizations with control of time and energy separations have already been demonstrated.
- A Delta undulator tailored for the new LCLS-II SXR line is being developed.

We thank Leif Glaser, Frank Scholz, Jörn Seltmann, Ivan Shevchuk (DESY, Hamburg, Germany) and Jan Grünert (European XFEL) for providing the polarimeter and excellent support with running the device during Delta machine development shifts.

Work was supported by U.S. Department of Energy, Office of Basic Energy Sciences, under Contract DE-AC02-76SF00515. A.B. Temnykh is supported U.S. National Science Foundation awards DMR-0807731 and DMR-DMR-0936384.

