

Distributed Seeding for Narrow-band X-ray Free-Electron Lasers

Dinh C. Nguyen, Petr M. Anisimov, Cynthia E. Buechler, John W. Lewellen, and Quinn R. Marksteiner

> 37th International FEL Conference 23-28 August, 2015 Daejeon, Korea

Outline

- SASE Self-Seeding
- Distributed Seeding (DS)
- MaRIE X-ray FEL
- Time-dependent Genesis Simulations
- Summary

SASE spikes form during exponential growth

Power versus s plots

Radiation pulse resembles electron current profile. Radiation spectra peak at wavelength longer than λ_0

SASE spikes appear in exponential growth regime. Spectral peak shifts toward resonance wavelength λ_0

At saturation, SASE spikes have a coherence length of

More SASE spikes are added beyond saturation. Spectra broaden and shift to slightly longer wavelength.

 $l_c = \frac{\pi}{2\sqrt{\pi}\rho}$

z = 103 m

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Slide 3

SASE Self-Seeding

A

Hard X-ray Self-Seeding (HXRSS) has been demonstrated at LCLS and SACLA

Ref: J. Amann et al., Nature Photonics 6, 693-698 (2012).

Ref: L. Geloni *et al.*, DESY **10-080**, (2010).

SASE background contributes to about one-half of HXRSS radiation energy. Geloni *et al.* proposed cascade self-seeding to improve HXRSS contrast.

Four-bounce Bragg crystal monochromator

Each Si(111) crystal deflects X-ray beam by ±5.4°; total deflection is zero.

Small-angle chicanes introduce 1-ps delay in electron path, matching the delay of 4BCM

Delay in electron beam path

$$\Delta S_e = R_{56} = -\theta^2 \left(\frac{4}{3}L + 2D\right)$$

Chicane R₅₆ is sufficiently large to erase SASE-induced microbunching.

$$\lambda << |R_{56}| rac{\sigma_{\gamma}}{\gamma}$$

The main effects are CSR-induced reduction in the slice beam energy and peak current.

MaRIE X-ray FEL (Matter-Radiation Interactions at Extremes) 250 MeV 1 GeV 12 GeV ≜ਁ੶ਁ≜ᢔ᠊ੑ੶຺ੑੑੑੑੑੑ੶₩ L2 L3-1 L3-2 L3-3 Gun L1 BC1 BC2 L3-4 Undulator **Parameter Symbol** Value Unit **Electron beam energy** $E_{\rm b}$ 12 GeV kΑ Peak current I_{pk} **Bunch charge** pC Q 100 Slice normalized emittance 0.2 μm \mathcal{E}_{n} 0.015% Slice energy spread σ_{γ}/γ **Undulator period** λ_{u} 18.6 mm 1.22 Peak undulator parameter K Å 0.2936 Wavelength λ **1-D FEL gain parameter** 0.05% 0 **3-D** gain length 2.5 m L_{G3D}

Details presented in Poster MOP045

Plots of number of photons versus z for DS

Two-stage DS

Three-stage DS

Number of photons increases exponentially with z immediately after the 2nd and 3rd filters.

DS yields higher contrast over SASE than SS Three-stage DS achieves 0.008% bandwidth

Slide 10

Summary

Slide 11

- DS differs from SASE Self-Seeding in three aspects: Filter more than once, filter before SASE spikes appear, and filter at a longer wavelength.
- Filtering at a wavelength longer than the resonance wavelength improves the contrast between the narrow-line DS signal and broadband SASE.
- Both two-stage and three-stage DS produce <0.01% relative bandwidth.</p>
- Time-dependent Genesis simulations show the three-stage DS can deliver
 >2 x 10¹⁰ photons/bunch at 42 keV for the MaRIE XFEL.

But will it work in the real world?

DS has been running for years!

THANK YOU

2837 VZ 56

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA