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Abstract 
Linear accelerators delivering high brightness electron 

beams are essential for driving short wavelength, high 
gain free-electron lasers (FELs). The FEL radiation output 
efficiency is often parametrized through the power gain 
length that relates FEL performance to the electron beam 
quality at the undulator. Experimental data and simulation 
results of existing and planned FEL facilities, collected in 
[1], are used to explicit the relationship between the FEL 
output wavelength and the electron beam six-dimensional 
brightness. Following [2], practical formulas are provided 
that show the dependence of the exponential gain length 
on the beam brightness. 

6-D ELECTRON BEAM BRIGHTNESS 
In the context of an electron bunch, the 4-dimensional 

(4-D) brightness, B4D, can be defined as the peak current 
divided by its 4-D transverse phase space volume that is 
the product of the transverse emittances [3]. Owing to the 
fact that linac-driven free electron lasers (FELs) are 
sensitive to the beam relative energy spread and local 
charge density, it is convenient to parameterize the linac 
performance in terms of the 6-D brightness, B6D, which is 
the total bunch charge divided by its 6-D phase space 
volume. The 6-D volume includes, in addition to the four 
transverse positions and slopes, the normalized 
longitudinal emittance, which scales as the product of 
bunch length and absolute energy spread. In the 
following, we assume the particle beam in the ultra-
relativistic approximation, so that the longitudinal charge 
distribution is assumed to be constant during acceleration. 

In general, we may define the brightness either locally, 
i.e., for each bunch slice (in this case, the brightness 
depends on the z-coordinate inside the bunch), or for the 
whole bunch, thus involving the bunch total charge and 
projected emittances. The transverse rms normalized 
emittances are invariant under acceleration and linear 
transport, presuming collective effects, such as space 
charge, may be neglected. The same is true for the 
longitudinal rms normalized emittance if the energy 
spread is intended as uncorrelated, i.e., without any 
energy chirp.  

The presence of nonlinear motion and collective effects 
along the beam delivery system may dilute the 
normalized emittances from their values at the injection 
point. Following [2], we introduce an effective 
degradation factor 1 in each plane of the particle 
motion so that 0,0, xxfnx , 0,0, yyfny , 

and

0,0,,,, EzzfEfzfnz , with obvious notation. We are 

now able to relate the 6-D normalized brightness at the 
undulator, Bn,f, to that at the linac injection, Bn,0: 
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In the ideal case of vanishing nonlinear and collective 
effects, 0,, zyx in Eq. 1 and thereby the 6-D 
normalized brightness is preserved at the injector level 
under acceleration and linear bunch length compression.  

IMPORTANCE OF PROJECTED BEAM 
PARAMETERS 

In contrast to linear colliders, where particle collisions 
effectively integrate over the entire bunch length, the FEL 
process takes place over short fractions of the electron 
bunch length. In fact, slice emittance and slice energy 
spread may vary significantly along the bunch and thus 
give local regions where lasing may or may not occur [4]. 
One could therefore argue that only slice electron beam 
quality is of interest, each slice being at maximum as long 
as the slippage length of the photon beam over the 
electrons, cumulated along the undulator length. In the 
following, we make the case that other considerations 
related to the electron beam control and optimization of 
the FEL performance justify an optimization of B6D 
defined in terms of the projected beam emittances. We 
will limit the discussion to the transverse emittances; 
correlations in the longitudinal plane are discussed in 
[1,2]. 

The need to control beam size and angular divergence 
along the undulator calls for measurements and 
manipulation of the electron beam optical (Twiss or 
envelope) parameters, which have to be matched to the 
design ones [5–8]. As a practical matter, optics matching 
is routinely performed by measuring the projected 
electron bunch transverse size [9]. From an operational 
point of view, it is therefore important to ensure that the 
projected transverse emittances and Twiss parameters be 
as close as possible to the slice ones, because this 
guarantees that most of the bunch slices are matched to 
the design optics and that they overlap in the transverse 
phase space. During beam transport and acceleration, at 
least two collective effects threaten locally to offset bunch 
slices in the transverse (and longitudinal) phase space, 
namely coherent synchrotron radiation (CSR) and 
geometric transverse wakefield (GTW). Specific optics 
designs can be adopted to minimize those collective 
effects (for a review of these topics, see for example [1]).  

The projected emittance can be considered a good 
marker also for externally-seeded FEL performance. In 
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such FELs, output FEL properties reflect the high 
longitudinal coherence of the seeding laser, which can be 
tens to hundreds of femtoseconds long. In order to 
maximize the FEL efficiency and the peak current, the 
final electron bunch duration is commonly specified to be 
as long as the seed laser duration plus some room 
(typically, from tens to hundreds of femtoseconds) for 
accommodating the shot-to-shot arrival time jitter of the 
electron bunch with respect to the seed laser. The electron 
bunch duration has to be even longer when the so-called 
“fresh bunch” scheme is implemented for lasing at high 
harmonic jumps [10–12]. Consequently, high 
performance from a seeded FEL requires uniformity of 
the slice beam parameters over most of the bunch 
duration in order to ensure the same strength of lasing 
from different slices. That is, seeded FELs also require a 
large value of electron beam brightness, defined in terms 
of projected transverse and longitudinal emittance. 

Another point in favor of carefully considering 
projected beam parameters is illustrated in [13], where it 
is shown that the output power gain length of a self-
amplified spontaneous emission (SASE) FEL [14,15] 
depends on the mismatch of bunch slices in the transverse 
phase space, thus on the projected emittance, even if the 
slice emittance is unperturbed. A similar result is expected 
to be valid for externally seeded FELs as well. The 
projected emittance growth due to mismatch of bunch 
slices in the transverse phase space is taken into account 
through the mechanism described by Tanaka et al. [16]. In 
that work, the authors identify two distinct processes that 
increase the FEL gain length. The first effect is referred to 
as the (lack of) electron-photon transverse spatial overlap 
along the undulator. The second one describes the 
accumulation of longitudinal phase error between 
electrons and radiation by virtue of the slowing down of 
individual electrons due to their local angular divergence. 
We recognize that the electrons’ angular divergence has 
two contributions (similar considerations can be found in 
[17,18]): one is incoherent and due to the non-zero beam 
emittance as depicted in Xie’s [19] and Saldin’s [20] 
models; the other is coherent, originating from the 
possible tilt of the slices’ centroid with respect to the 
reference trajectory. The coherent divergence adds to (and 
in some cases, surpasses) the incoherent one and may 
amplify the effect of bunching smearing. One source of 
coherent divergence occurs when each slice is 
transversely kicked by collective effects in the linac and 
moves along the undulator on a trajectory different from 
that of other slices. In this case, Tanaka’s formula for the 
gain length is revised via the following ansatz, to estimate 
the 3-D gain length in the presence of collective effects 
[13]:  

               (2) 

LG,3D is the 3-D power gain length as calculated by Xie 
[19] and DGth L 3, . The electron beam slice 

transverse emittance and the slice energy spread at the 
undulator are taken into account in LG,3D; the information 
on the projected emittance growth , which is uniquely 
determined by the initial beam parameters and its 
dynamics in the linac, is brought about by 

ucoll [13], with u the average betatron 
function along the undulator. 

FEL REQUIREMENTS FOR THE 
ELECTRON BEAM 

It is well-known that in the so-called 1-D, cold limit, 
where electron beam energy spread, transverse emittance 
and radiation diffraction effects are all neglected, the 
radiation peak power at the resonant wavelength grows 
exponentially along the undulator with a gain length LG = 

u/(4 3 ). Here u is the undulator period length, and  
is the “FEL parameter” [4]: 

,
2
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with p being the plasma frequency, I the electron bunch 
peak current, IA = 17045 A the Alfven current,  the 
relativistic Lorentz factor for the beam mean energy, x 
the standard deviation of the (assumed round) electron 
beam transverse size; aw = K for helically- and aw = K/ 2 
for planar-polarized undulator, where K = 
0.934B0[T] u[cm] in practical units, is the so-called 
undulator parameter, B0 the undulator peak magnetic 
field, and c the speed of light in vacuum. [JJ] is the 
undulator-radiation coupling factor [21], equal to 1 for a 
helical undulator, and to  10 JJ  for a planar 
undulator, where J0 and J1 are Bessel’s functions of the 
first kind with argument 22 24 KK . The FEL 
fundamental wavelength of emission satisfies: 

2
2 1

2 w
u a                              (4) 

Typically   10 3 in the UV wavelength regime but 
may drop to 10 4 in the X-ray regime for kA-current 
beams. If the undulator length is equal or longer than 

18LG, the conversion of electrons’ kinetic energy to 
photon energy considerably enlarges the electron beam 
energy spread. Once the spread in the longitudinal 
momentum of the electrons becomes sufficiently large to 
cause significant de-bunching over one power gain 
length, the FEL gain process strongly diminishes. 
Consequently, the FEL gain grows exponentially as far as 
the following numerical condition applies to the beam 
fractional energy spread [22]: 

 5.0 ,                                 (5) 

22
3,

, 1 thcoll
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with an eventual reduction in the FEL gain; the associated 
FEL power saturates at a level Psat  1.6 EI/e. An electron 
beam at multi-GeV energies and kA-scale peak currents is 
able to produce GW-scale radiation peak powers. For 
SASE devices, the value of  also defines the 
approximate number of undulator periods Nsat 1/  and 
the length Lsat  u/  necessary to reach saturation. 

The spread in longitudinal momentum in Eq. 5 has two 
major sources: (1) the incoherent energy spread that is 
“uncorrelated” with the particle longitudinal position 
inside the bunch, and (2) the non-zero transverse 
emittance. In other words, Eq. 5 refers both to the spread 
of longitudinal momentum and to the energy spread 
associated with the square of the beam transverse angular 
divergence [23]. Beam divergence scales as ( u with 

u the average betatron function along the undulator and 
the geometrical electron beam transverse emittance (the 

two parameters are measured in the same plane; the 
divergences in the two planes add in quadrature). At the 
same time, in order to minimize emittance effects and to 
ensure optimal transverse overlap of the co-propagating 
radiation and electron beam, the electron beam trajectory, 
transverse size and angular divergence must be controlled 
with steering and quadrupole magnets that are interleaved 
between the undulator segments. The most efficient 
electron-photon beam interaction occurs when the 
transverse beam phase space area and distribution 
matches that of the radiation, whereas the transverse 
electron beam size scales as ( u Considerations on 
both the maximum allowable effective energy spread and 
the transverse overlap lead to an rms value of  that must 
be smaller than, or of the same order as, that of the 
diffraction-limited photon beam [24]: 

4, yx                                    (6) 

Equation 6 implies an “optimum” average betatron 
function along the undulator of the order of the FEL 
power gain length. More details on this relationship are 
discussed in the following Section. In general, Eq. 6 
allows to maximize the FEL gain and it also optimizes the 
FEL transverse coherence.  

OPTIMUM BETATRON FUNCTION 
It should be noticed that the term “optimum” used 

above refers to the condition for minimum SASE FEL 
power gain length. Some deviations are usually found 
when the SASE FEL output power at saturation is 
maximized. The existence of an “optimum” average 
betatron function in the undulator, in the assumption of 
periodic smooth focusing, can be inferred already by 
considering the effective size and divergence of a photon 
beam propagating over one FEL gain length, in the 
presence of a non-zero emittance electron beam. Those 
are, respectively, 22

, )4(Gueff L  and 

Gueff L2
,' , whereas the expressions apply to 

each transverse plane separately, or we may intend the 
(square of) electron beam size and divergence as the sum 
in quadrature of the size and divergence in the two planes. 
The photon beam brilliance is maximized when the 
effective photon beam emittance

effeff ,, '   is minimized, 
which implies simultaneously )4( , )4(Gu L
and )4(Gu L . That would be true when Eq. 6 holds 
and at the same time )4(Gu L . 

The found expression, however, suggests an optimum 
value of u which is commonly at the sub-meter level, and 
therefore not practical. As a matter of fact, it is not correct 
since that was derived by considerations solely related to 
the transverse overlap of the electron beam and the FEL 
radiation. When the electrons’ longitudinal motion w.r.t. 
the FEL radiation is also considered, one finds that the 
betatron motion affects the synchronism between electron 
and emitted photons, so that the transverse emittance 
causes Landau damping of the electrons bunching. 
Considerations on the bunching smearing leads to the 
lower limit 

Gu L50.025.0 for the optimum betatron 
function [25,26]. When the constraint on the total energy 
spread is considered, Eq. 6, together with the target of 
maximum FEL gain, Eq. 3, an equation for the optimum 

u is found [27]. In this case, when the cold beam limit 
(no energy spread) and the emittance diffraction limit are 
considered at the same time, we find an optimum value

Gu L2 (actually, a betatron phase advance of 0.5 rad 
over one gain length) [27]. This analytical evaluation was 
somehow supported from simulation results [28], which 
provided the optimum condition

Gu L3 for non-zero 
energy spread. One should notice that those results are 
consistent with a photon beam weakly affected by 
radiation diffraction. Indeed, if we assume a photon beam 
size at waist that matches the electron beam size, then the 
ratio of the Rayleigh length over the FEL gain length 
must be 14 Gu L . At the diffraction limit, we have 
again 

Gu L . In conclusion, in most practical cases the 
approximate equation

Gu L is taken as a reference. 

SCALING LAWS 
Since a smaller transverse emittance is usually 

associated with shorter FEL wavelengths, and since we 
can observe a proportionality between transverse 
emittance and Bn,f, we wonder if we could establish any 
relationship between Bn,f, and . This is done below, 
neglecting for the moment any emittance dilution, by 
substituting Eq. 4 into Eq. 1, and assuming the electron 
beam transverse emittance (equal in the two planes) at the 
diffraction limit (see Eq. 6):  

1
1
132

2

2

2
0

2
0,,,

,
wuEEfnzfnyfnx

fn a
I

cc
IQ

B    (7) 

It is worth noticing that the ratio I/ E is invariant under 
acceleration and compression (whereas the peak current
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Figure 1:  Six-dimensional normalized electron beam brightness vs. maximum photon energy at fundamental FEL 
emission, for facilities in the ultra-violet (UV) to X-rays, designed (blue) or running (red). Data taken from [1] and 
updated to 2013. From lower to higher energies, now-running facilities are: SPARC (Italy), SDUV-FEL (China), 
FLASH-I (Germany), FERMI (Italy), LCLS (USA), SACLA (Japan). The brightness refers to the projected (circle) or 
slice value in the bunch (diamond). Copyright of Photonics MDPI [2]. 

and the energy spread must be evaluated at the same 
location along the accelerator), when collective effects are 
ignored. We find that, for any given undulator, a shorter  
requires a higher Bn,f. This is confirmed in Fig. 1, where 
Bn,f of designed and existing single-pass linac-driven FEL 
facilities, is shown as a function of the maximum photon 
energy (i.e., minimum fundamental wavelength) from UV 
to X-rays (inferred or measured data are taken from [1] 
and updated to 2013). Moreover, Fig. 1 shows Bn,f 
evaluated for projected and slice emittances (where the 
slice length is approximately one tenth of the total bunch 
duration, and located in the bunch core). A gap of one or 
two orders of magnitude occurs typically between the two 
brightness values. The closer the projected and the slice 
brightness, the more efficient the FEL process is, since 
most of the electrons are distributed in identical manner in 
5-D (x,x’,y,y’, ) phase space along the bunch. Usually, a 
smaller gap between the projected and the slice brightness 
is gained at the expense of the flexibility of the FEL 
facility in wavelength, intensity, polarization, etc.  

Since ( ) determines the efficiency of the electron-to-
photon energy transfer in the undulator at a given 
wavelength, a large  is typically desired because that 
implies a shorter gain length, or a higher FEL power at 
saturation. Some restrictions to the upper value of  may 
be considered in a SASE FEL that targets a relatively 
narrow spectral bandwidth because in this kind of FEL 
the output bandwidth is also proportional to . We can 
explicit the dependence of  on Bn,f by substituting Eq. 7 
into Eq .3, similarly to what was done in [29] for the 
longitudinal brightness. We impose 4  = , re-define the 
energy spread like the rms value of , and consider a 

specific, typical value K = 1 in a helical undulator. Finally 
we get: 

,
][

][][016.0
3/1

,
3/1

31

34

m
A

B
m

nmGeVE
fn

u

        (8) 

from which we see that the strongest dependence of  is 
on the electron beam energy. The latter can be increased 
with a longer linac or higher accelerating gradient RF 
structures, but it is also quite expensive. It is worth noting 
that since the FEL resonance condition in Eq. 4 imposes  

 1/E2,  is not expected to vary much when  is made 
short, and in fact we typically have   10–3–10–4 in the 
entire XUV range (i.e.,   0.1–100 nm).  

Equation 8 can be further manipulated and  written as 
a function of the electron beam transverse and 
longitudinal parameters at the undulator, whereas still we 
retain 4  =  and K = 1: 

3/1
,4

][
][][

101.3
m

mAI

u

xn                    (9) 

Equation 9 tells us that, in order to have  large at any 
given  and for any fixed optics in the undulator, it is 
always convenient to increase the peak current, while 
there might be no practical convenience in reducing the 
normalized emittance below the diffraction limit, because 
this could reduce  with much improvement neither in the 
FEL output power, nor in the FEL transverse coherence. A 
closer look to Eq.9 tells us that, when Eq.6 is forced to 
equality, if n,x = x is lowered because  is lowered 
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(while x is kept fixed), then  is fixed that implies u is 
lowered (see Eq. 4);   1/3 is also lowered. If n,x = x is 
lowered because x is lowered (while  is kept fixed), then 

 is lowered that implies u is lowered;   u
1/3 is 

lowered as well. 
Alternatively, if the equality in Eq. 6 is broken and the 

geometric emittance is left “free” to span lower values 
than , Eq. 9 is not valid anymore and, for same peak 
current and undulator optics, a higher FEL gain is 
expected by virtue of both a reduced beam size (see Eq. 
3), and of an overall smaller effective energy spread (see 
Eq. 5). A notable improvement of SASE FEL output 
power by virtue of a transverse emittance well below the 
diffraction limit was in fact observed is simulation runs 
and recently reported in [30]. 

We conclude this Section by noticing that by replacing 
that “optimum” value

Gu L  in Eq. 9, we find that  
scales like I, instead of the cubic power of I as in Eq. 3. 
In fact, Eq. 3 assumes a scaling with I which is 
independent from the transverse beam size. The condition

Gu L , instead, implies that the transverse charge 
density changes as the current changes and, in particular, 
the beam size squeezes as the current increases, so 
leading to a more favourable dependence of  on I. 
Moreover, by virtue of Eq. 2, a larger u than usually 
considered on the basis of the previous discussion could 
be considered, when the projected emittance growth 
becomes comparable to the unperturbed value of the slice 
emittance. 

CONCLUSIONS 
The importance of projected electron beam parameters 

for FEL performance were highlighted, in regard of 
operational aspects of an FEL facility and of a new 
definition for the SASE FEL 3-D gain length. Scaling 
laws for the FEL parameter in the 1-D approximation 
with the electron beam 6-D brightness were discussed, as 
well as the relationship between the brightness and the 
FEL wavelength. Considerations on the beam optics in 
the undulator were refreshed, which suggest an optimum 
range for the average betatron function also in 
consideration of the importance of the projected emittance 
for the FEL performance. 
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