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Abstract

Understanding CSR effects for the generation and trans-

port of high brightness electron beams is crucial for designs

of modern FELs. Most studies of CSR effects focus on the

impacts of the longitudinal CSR wakefield. In this study,

we investigate the impact of the initial retarded potential

energy of particles, due to bunch collective interaction, on

the transverse dynamics of particles on a curved orbit. It is

shown that as part of the remnants of the CSR cancellation

effect when both the longitudinal and transverse CSR forces

are taken into account, this initial potential energy at the

entrance of a bending system acts as a pseudo kinetic en-

ergy, or pseudo energy in short, because its effect on particle

optics through dispersion and momentum compaction is in-

distinguishable from effect of the usual kinetic energy offset

from the design energy. Our estimation indicates that the

resulting effect of pseudo energy spread can be measurable

only when the peak current of the bunch is high enough such

that the slice pseudo energy spread is appreciable compared

to the slice kinetic energy spread. The implication of this

study on simulations and experiments of CSR effects will

be discussed.

INTRODUCTION

When a high brightness electron beam is transported

through a curved orbit in a bending system, the particle

dynamics is perturbed by the coherent synchrotron radiation

(CSR) forces, or the collective Lorentz force as a result of

the Lienard-Wiechert fields generated by particles in the

bunch. The longitudinal CSR interaction takes place when

the fields generated by source particles at bunch tail over-

take the motion of the test particles [1] at bunch head and

cause changes of kinetic energy for the head particles. For

parameters currently used in most machine designs and op-

erations, the approximation of the longitudinal CSR force

by that calculated using 1D rigid-line bunch model [2] often

gives good description of the observed CSR effects [3].

In addition to the longitudinal CSR force, the transverse

CSR force [4] can directly perturb transverse particle dy-

namics. This force features energy independence and, due to

divergent contribution from nearby-particle interaction, has

strong nonlinear dependence on the transverse (and longitu-

dinal) positions of particles inside the bunch. Meanwhile,

the potential energy change, as a result of both longitudinal

and radial CSR or Coulomb forces, can cause change of

kinetic energy of the particles and impact transverse particle

dynamics via dispersion. The joint effects of both the trans-

verse CSR force and the kinetic energy change on bunch
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transverse dynamics have been analyzed earlier [5–7], and

it is found that their harmful effects related to the potent

feature of strong transverse dependence are cancelled. After

the cancellation, the transverse dynamics of particles is per-

turbed by the remaining driving factors such as the effective

longitudinal CSR force and the centrifugal force related to

particles’ initial potential energy.

In this study, we present the role of potential energy in

the particle transverse dynamics after the cancellation effect

is taken into account. We will show that the initial slice

potential energy spread of a bunch, which we call pseudo

slice energy spread, is indistinguishable from the usual slice

kinetic energy spread in its perturbation to the transverse par-

ticle optics via both dispersion and momentum compaction.

This effect is measurable only when the peak current of

the bunch is high enough such that the pseudo slice energy

spread is appreciable compared to the slice kinetic energy

spread. The implication of this study on simulations and

experiments of CSR effects will be discussed.

.

ROLE OF POTENTIAL ENERGY IN

BUNCH TRANSVERSE DYNAMICS

In this section the CSR cancellation effect is briefly re-

viewed. We show how a centrifugal force term, which is

related to the initial potential energy of particles, emerges

as one of the remnant of the cancellation. We also discuss

the role of initial potential energy in transverse particle dy-

namics.

Consider an ultrarelativistic electron bunch moving on

a circular orbit with design radius R and design energy

E0 = γ0mc2. Let x = r − R be the radial offset of par-

ticles from the design orbit. The single particle optics is

determined by the configuration of the external magnetic

fields, while for a bunch with high peak current, this design

optics will be perturbed by the Lorentz force F
col result-

ing from the collective electromagnetic interaction amongst

particles within the bunch. For transverse dynamics, such

perturbation is expressed in terms of the first order equation

d2x

c2dt2
+

x

R2
=

∆E

RE0

+
Fcol
x

E0

, (1)

with Fcol
x being the radial component of the collective

Lorentz force F
col
= Fcol

s es + Fcol
x er , and ∆E = E − E0

being the deviation of the kinetic energy from the design

energy. The existence and effect of transverse CSR force

Fcol
x were first pointed out by Talman [4] when he analyzed

Fcol
x for space charge interaction of a bunch on a circular

orbit using Lienard-Wiechert fields. His study shows that
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as a result of logarithmic divergence of nearby-particle in-

teraction, this force is dominated by a term with the potent

undesirable feature of strong nonlinear dependence over par-

ticles’ transverse position within the bunch. Besides its role

in the second driving term on the RHS of Eq. (1), the CSR

force also causes change of particle’s kinetic energy

∆E(t) = ∆E (t = 0) +

∫ t

0

F
col · vdt′, (2)

which impacts the beam optics via dispersion as depicted

by the first driving term in Eq. (1). As an example, the case

of zero bunch charge corresponds to Fcol
x = Fcol

s = 0 and

∆E = E(0) − E0, when Eqs. (1) and (2) are reduced to equa-

tions for single particle dynamics. For the case of 1D CSR

model as used in ELEGANT simulation, one has (1) Fcol
x = 0

and (2) Fcol
s in Eq. (2) is obtained for a 1D bunch moving

along the design orbit with its line-charge density distribu-

tion obtained by projecting the actual 3D bunch distribution

(at the time of force calculation) onto the design orbit, with

the assumption that this 1D projected distribution has been

frozen as it is for all retarded times. In general, however, the

kinetic energy can be changed by the usual longitudinal CSR

force acting on the bunch as well as by the potential energy

change caused by various ways of particle-bunch interac-

tion. Examples of such particle-bunch interaction include

(1) betatron motion in the potential well set by the radial

CSR force for a coasting beam [8], (2) noninertial space

charge force related to the radiative part of the longitudinal

Lienard-Wiechert electrical field experienced by off-axis

particles interacting with a line bunch on a circular orbit [9],

(3) longitudinal space-charge interaction for a converging

bunch on a straight section right before the bunch entering

into the last dipole of a bunch compression chicane [10]. In

all these examples, the collective-interaction-induced poten-

tial energy eΦcol shares the same feature of strong nonlinear

dependence of particles’ transverse position as that shown

in the Talman’s force.

The relation between the two driving terms in Eq. (1)

becomes clear when both Fcol
x and ∆E for the test particle

are written in terms of retarded potentials [5]. The Taman’s

force is written as

Fcol
x = Feff

x + FCSCF, (3)

with the centrifugal space charge force FCSCF term and the

effective tranverse force Feff
x term defined respectively as

FCSCF
=

eβs Acol
s

r
, (4)

Feff
x = −e

(

∂Φcol

∂x
− β · ∂A

col

∂x

)

− e
dAcol

x

cdt
. (5)

Meanwhile the change of kinetic energy for the test particle

is

∆E(t) = ∆E(0) − e[Φcol(t) − Φcol(0)] +

∫ t

0

Feff
v (t′) cdt′,

(6)

with the longitudinal effective force term Feff
v defined as

Feff
v = e

(

∂Φcol

c∂t
− β · ∂A

col

c∂t

)

. (7)

For a bunch with phase space density distribution f (r,v, t),

the retarded potentials (Φcol,Acol) in the above expression

are given by

Φ
col(r, t) = e

∫

f (r′,v′, t′)

|r − r′ |
dr

′dv
′,

A
col(r, t) = e

∫

v
′ f (r′,v′, t′)

|r − r′ |
dr

′dv
′ (8)

for t′ = t − |r − r
′ |/c, and with Ne electrons in the bunch,

∫

f (r,v, t)drdv = Ne . (9)

The advantage of Eqs. (3)-(7) is that the potent term in Fcol
x

of Eqs. (1) and (3), contributed from the divergent local

interactions, is now cleanly represented by the centrifugal

space charge force FCSCF in Eq. (4), leaving the remaining

effective radial force Feff
x free from the energy-independent

local divergence of the order of FCSCF. Similarly, all the

local-interaction contributions to ∆E(t) are summarized by

−e[Φcol(t) − Φcol(0)] in Eq. (6), leaving the remaining con-

tributions from the effective longitudinal force Feff
v also free

from the energy-independent local divergence. Substitut-

ing Eqs. (3) and (6) into Eq. (1), one obtains the transverse

dynamical equation

d2x

c2dt2
+

x

R2
=

δE (0)

R
+ Ĝcor (10)

with δE (0) the relative total energy deviation from design

energy

δE (0) =
E (0) − E0

E0

, for E (0) = E(0) + Eφ (0) (11)

with

Eφ (0) = eΦcol(0), (12)

and Ĝcor contains all the terms related to the interaction

Lagrangian [7] that has negligible energy-independent local-

interaction contributions

Ĝcor
=

1

E0

(

1

R

∫ t

0

Feff
v (t′)dt′ + Feff

x

)

+ Gres (13)

with the residual of cancellation

Gres = −e
Φ

col(t) − βs Acol
s (t)

RE0

≃ − e2

R

∫

γ−2
0

+ θ2/2

|r − r′ |
f (r′,v′, t′)dr

′dv
′, (14)

for θ = [s(t) − s′(t′)]/R being the angular distance be-

tween the test particle at the observation time and the source

particle at retarded time. As we can see, the terms with
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potent local-divergence contributions in both Fcol
r /E0 and in

∆E/(RE0) of Eq. (1) are collected in Gres in Eq. (14). More-

over, since θ → 0 when r
′ → r, the local divergence of

the two terms cancels, leaving the residual with no energy-

independent contributions from local interaction for any

bunch distribution, as indicated by Eq. (14) [7, 11, 12].

Unlike the usual longitudinal CSR force, which is the re-

sult of EM field generated by tail of the bunch overtaking the

head of the bunch [1], analyses of the radial CSR force based

on Lienard-Wiechert fields show [11,13] that Fcol
x is domi-

nated by contributions from head-tail interaction that has a

sudden turn-on behavior as the bunch moves from straight

section onto a circular orbit. It can be shown the dominant

head-tail contributions in Fcol
x are all included in FCSCF of

Eq. (4), and it turns on suddenly when the bunch moves from

straight section r → ∞ to r = R. Likewise the head-tail con-

tributions are equally important for −eΦcol(t) term in ∆E of

Eq. (6). Since the perturbation of ∆E on optics in Eq. (1) is

via the driving term ∆E/(E0R) in Eq. (1), its effect on the

transverse dynamics also has a sudden turn-on behavior as

the bunch enters from straight section (R→ ∞) to a circular

arc (R finite). Consequently the two terms involved in the

cancellation in Eq. (14) share common behavior and the

residual of the cancellation is orders of magnitude smaller

than each of the two terms [12].

As the two potent terms −eΦcol(t)/(RE0) and

eβs Acol
s (t)/(RE0)—contained in the first and second

driving terms of Eq. (1) respectively—are cancelled,

a centrifugal force term eΦcol(0)/RE0 emerges as the

remnant of the cancellation. The effect of this term on

particle dynamics is the focus of this paper. One important

observation [11, 13] is that similar to features of the

centrifugal space charge force, eΦcol(0) in Eq. (11) also

contains contribution from the head-tail particle interaction

with local divergence, and its effect on the transverse

dynamics has the sudden turn-on behavior which is not

cancelled away. On the other hand, it was noted [6, 12]

that since δH (0) in Eq. (10) acts as the initial relative

energy offset, so unlike the eΦcol(t) term, here eΦcol(0) in

Eq. (11) does not cause emittance growth when the bunch is

transported through an achromatic bending system such as

a magnetic bunch compression chicane.

Another residual term left from the cancellation is Ĝcor

in Eq. (10). It is dominated by effects from the longitudi-

nal tail-head CSR interaction, for which 1D CSR model is

usually a good approximation. Exceptional situations occur

when the Derbenev’s criteria [5] for the validity of 1D CSR

model is violated. Such situations include CSR interaction

during roll-over compression [14] and cases of CSR-induced

microbunching instability when either the modulation wave-

length is very short or the bunch transverse size is very large.

The correct evaluation of retarded potentials/fields in such

situations requires extra care in identifying the source parti-

cles by finding the intersection of the past light cone of test

particles with the 2D/3D bunch distribution in the history

of bunch motion [14].

Let (∆xc ,∆x′c ,∆zc ,∆δc ) be the phase space perturbation

generated by Ĝcor in Eq. (10). Then after combining Eq. (10)

(for s ≃ ct ) with dz/ds = −x/R(s), one finds that the initial

kinetic energy offset and potential energy of a particle at

the entrance of a bending system always work together, as

the joint entity δE0, in causing transverse and longitudinal

chromatic effects for single particle optics, namely,





x

x′

z

δH




=





R11 R12 0 R16

R21 R22 0 R26

R51 R52 1 R56

0 0 0 1









x0

x′
0

z0

δH0




+





∆xc
∆x′c
∆zc
∆δc




,

(15)

for

δE0 = δk0 + δφ0, (16)

with δk0 = (E(0) − E0)/E0 the usual relative kinetic energy

offset, and δφ0 = Eφ0/E0. The significance of the impact

of δφ0 on beam dynamics depends on the comparison of

the initial potential energy spread with the initial kinetic en-

ergy spread. The discussion of Lorentz gauge as the natural

choice of gauge for exhibiting the CSR cancellation effect

can be found in Ref. [7].

THE SLICE TOTAL ENERGY SPREAD

FOR A GAUSSIAN BUNCH

As a simplest example, we consider the impact of Eφ on

the slice spread of total energy for an electron bunch with

an idealistic cylindrically symmetric 3D Gaussian density

distribution

P(r, z) =
1

(2π)3/2σ2
rσz

exp

(

− r2

2σ2
r

− z2

2σ2
z

)

. (17)

The bunch arrives at the entrance of a bending system at t = 0

(we drop t dependence in the following discussion) after

moving ultrarelativistically on a straight path with vs = βc

and vx = vy = 0. Here we have σx = σy = σr and

r2
= x2 + y

2. The probability distribution of particles over

the total energy offset ∆E = ∆E + Eφ , with ∆E,Eφ and ∆E
being random variables, is

PE (∆E) =

∫

PE (∆E − Eφ )PEφ
(Eφ )dEφ , (18)

where we assume a Gaussian distribution for the kinetic

energy

PE (∆E) =
1

√
2πσE

exp



−
(∆E)2

2σ2
E



 . (19)

In this section we summarize how the distribution of total

energy PE (∆E), for the central slice (z = 0) of the bunch,

deviates from the usual kinetic energy distribution PE (∆E)

as a result of the potential energy distribution PEφ
(Eφ ) of

the particles. We note that PE (∆E) = PE (E) when the

potential energy vanishes, i.e., PEφ
(Eφ ) = δ(Eφ ).

The potential energy distribution PEφ
(Eφ ) can be

uniquely determined from the probability distribution of
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particles in the bunch P(r, t) and the dependence of po-

tential energy on the particle spatial distribution Eφ (r, t).

For our example of cylindrical Gaussian distribution, with

(r̃ , z̃) = (r/σr , z/σz ) and w = r̃2, the probability for parti-

cles to lie between w and w + dw for the central z = 0 slice

is deduced from Eq. (17)

Pw (w) = e−w/2/2, with

∫

∞

0

Pw (w)dw = 1. (20)

The potential energy of a test particle at (x, t)

Eφ (x, t) = e

∫

ρ(xr , t − |x − xr |/c)

|x − xr |
d3

xr (21)

can be obtained [15] by applying Lorentz transformation

on the scalar potential from the bunch comoving frame to

the lab frame. For our example, with α = (σr/γσz )2, this

yields

Eφ (r, z) = Eφ0 f (r̃ , z̃), with Eφ0 = mc2Ip/IA (22)

for the peak current Ip = Neec/(
√

2πσz ) and Alfven current

IA = e/(rec) = 17 kA, and

f (r̃ , z̃) =

∫

∞

0

dτ

(1 + τ)
√

1 + ατ
exp

(

− r̃2

2(1 + τ)
− z̃2

2(1 + ατ)

)

.

(23)

The dependence of the form function f ( x̃, ỹ, z̃) is shown in

Fig. 1.

For the central slice at z = 0, we have from Eq. (22)

Eφ (r,0) = Eφ0 U (w) (24)

for the normalized potential energy

U (w) =

∫

∞

0

dτ

(1 + τ)
√

1 + ατ
exp

(

− w

2(1 + τ)

)

. (25)

Combining U (w) with Pw (w) in Eq. (20), one gets the prob-

ability for the value of potential energy of a particle to reside

between Eφ and Eφ + dEφ

PEφ
(Eφ ) dEφ = PU (U)dU = Pw (w)dw (26)

or

PU (w) ≡ PEφ (Eφ )Eφ0 =
Pw (w)

|dU (w)/dw |
. (27)

The semi-analytical results of probability distribution PU

on U is then obtained from the parametric dependence of

(U (w),PU (w)) on w [15], as shown in Fig. 2, which au-

tomatically satisfies
∫

PU (U)dU = 1. The probability of

distribution for the total energy of particles in Eq. (18) then

becomes

PE (∆E) =

∫

PE (∆E − Eφ0U)PU (U)dU. (28)

For the example in Fig. 1, the average and rms of particle

distribution over U are respectively < U >= 15.0 and σU =

Figure 1: Behavior of f ( x̃, ỹ, z̃) in Eq. (23) for a cylindrical

bunch over (a) the x̃ = 0 plane and (b) the z̃ = 0 plane for

α = 5.7 × 10−7 .

0.51. An estimation of the rms spread of the total energy

resulted from Eq. (18) is given by

σE ≃
√

σ2
E

+ (Eφ0σU )2. (29)

This relation shows that the rms of the total energy can be

appreciably larger than that of the kinetic slice energy spread

when

ξ ≡
Eφ0σU

σE

≥ 1 (30)

implying simutaneously both high peak current Ip and small

kinetic energy spread σE .

To quantitatively compare the slice potential energy

spread with the usual slice kinetic energy spread, and in

particular, to compute the slice spread of the total energy,

here we use the following parameters for the bunch [16, 17]

E0 = 135MeV, σz = 750µm, ǫnx,y = 1µm, βx,y = 6 m,

(31)

which corresponds to α = 5.7 × 10−7. We further choose

Ip = 120 A and thus Eφ0 = 3.6 keV. Substituting the semi-

analytical results PU (U) as shown in Fig. 2 into Eq. (28), one

gets the distribution of total energy spread PE (∆E) for cases
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< U >

12 13 14 15 16
0.0

0.2

0.4

0.6

0.8

1.0

U

P
U

PU HUL

Figure 2: Probability distribution PU (U) for the central slice

of a cylindrical Gaussian bunch with α = 5.7 × 10−7.

when the slice kinetic energy spread takes (1) the typical

value σE = 3 keV [18] when ξ = 0.6 and (2) σE = 1

keV when ξ = 1.8. The final results are shown in Fig. 3.

It confirms our expectation that when ξ ≤ 1 the potential

energy has negligible effect on the slice total energy spread

σE , as displayed by Fig. 3a, yet when ξ ≥ 1 the potential

energy spread can cause appreciable widening of the total

energy spread, as indicated by Fig. 3b in which the red

curve for PE (∆E) is much wider than the green curve for

PE (E). Numerical evaluation using PE (∆E) of Eq. (28)

yieldsσE = 2.09 keV for Fig. 3b, which agrees well with the

estimation by Eq. (29) for σE = 1 keV. The semi-analytical

results of PE (∆E), shown by the red curves in Fig. 3, are

also in good agreement with results from the Monte Carlo

approach presented by the red dots in Fig. 3. Here for the

Monte Carlo approach we populate N = 104 particles with

random Gaussian distributions in both the 2D configuration

space (in the z = 0 plane) and in the kinetic energy offset

∆E. One then evaluates the total energy ∆E i = ∆Ei + Ei
φ

of the i-th (i = 1,N ) particle by using Ei
φ

in Eq. (22), and

further obtain the histogram of particle distribution in ∆E.

DISCUSSIONS

In this paper, after a brief review of the cancellation effect

in the CSR-induced perturbation on bunch transverse dynam-

ics for an ultrarelativistic electron bunch moving through

a magnetic bending system, it is shown how, after cancel-

lation, the effective CSR forces and the potential-energy

related centrifugal force emerge as the net driving factors for

particle transverse dynamics. The behavior of longitudinal

effective CSR force for an energy-chirped Gaussian bunch

has been studied earlier [14], and in this presentation we

summarized that role and behavior of the initial potential

energy term. The main conclusion is that the initial poten-

tial energy always works together with the initial kinetic

energy in perturbing the particle transverse dynamics, and

for the example of a Gaussian bunch, we find that the poten-

tial energy effect is important only when the peak current

of the bunch is high and the slice kinetic energy spread is

small, i. e., ξ ≥ 1. Note that ξ in Eq. (30) should remain

-15 -10 -5 0 5 10 15

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

E HkeV L

P
E

HaL ΣE k=3 keV

-15 -10 -5 0 5 10 15

0.0

0.1

0.2

0.3

0.4

E HkeV L

P
E

HbL ΣE k=1 keV

Figure 3: PE (∆E) for z = 0 slice of a cylindrical Gaus-

sian bunch with Eφ0 = 3.6 keV, α = 5.7 × 10−7 for (a)

σE = 3keV and (b) σE = 1 keV. Green line: Gaussian

distribution for kinetic energy PE (E); Brown line: semi-

analytical results for distribution of total energy PE (∆E);

Solid black line: Gaussian distribution using the estimated

rms in Eq. (29); Red dots: Monte Carlo results of PE (∆E).

approximately a constant when the bunch gets compressed

by a magnetic chicane with compression factor C, since both

Eφ0 in Eq. (22) and the slice kinetic energy spread σE are

increased by C. The potential energy spread for a general 3D

bunch distribution requires careful numerical calculations.

For beam and machine parameters used in present de-

signs, the 1D CSR model adopted by ELEGANT simula-

tion often gives results in good agreement with measured

CSR effects [3]. From the point of view of cancellation

effect in CSR, the explanation of such success resides in the

fact that in the 1D model both parts of the cancellation—

the radial CSR force Fcol
r and the potential energy change

−e[Φcol(t) − Φcol(0)]/R—-are set to be zero, and only the

impact resulted from the dominant longitudinal CSR force

Feff
v is being kept. The 2D/3D CSR effects are expected

to show up in experiments for the unusual cases when the

bunch distribution in x-z plane does not satisfy the Derbenev

criteria σx/(σ
2
z R)1/3 ≪ 1, thence the behavior of Feff

v will

deviate [14] from that for a 1D rigid-line bunch, and when the

bunch parameters are such that Eq. (30) is satisfied, thence

the effect ot potential energy will appear as enlargement of

the measured slice energy spread or lengthening of bunch
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length for a bunch at maximum compression as compared

to results from the 1D CSR model.

Correct modeling of the cancellation effect poses signifi-

cant challenge for 2D/3D CSR simulations, since it requires

the two parts involved in the cancellation, −e[Φcol(t) −
Φ

col(0)]/R and the radial CSR force Fcol
r , be calculated with

the same accuracy. Because e[Φcol(t) − Φcol(0)] is an inte-

grated effect of longitudinal and transverse CSR force on the

circular orbit or Coulomb forces on a straight path, the can-

cellation effect can be taken care automatically only when

both the CSR and space charge interaction are fully taken into

account and the dynamics are advanced self-consistently. In

addition, all the potential terms Φcol(t), Φcol(0) and Acol
s (t)

have sensitive dependence on the 3D bunch density distribu-

tion, as shown in Fig. 1. Without adequate care, incomplete

modeling could result in partial or none cancellation and

cause artificial errors. More detailed discussions can be

found in Ref. [15].
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