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Abstract
We derive wakefield of a round pipe with a sinusoidal

wall modulation and use this model for study of wakefields

due to wall roughness of the undulator vacuum chamber of

free electron lasers.

INTRODUCTION
In free electron lasers the wakefield due to the wall

roughness of the vacuum chamber in the undulator can

have important implications on the required smoothness

of the beam tube. Detailed theoretical studies of the

roughness induced impedance has been carried out in the

past [1–4] and provided a useful tool for computation of

the wakes and practical recommendations for the undulator

vacuum chamber design.

Among several wakefield models a simple sinusoidal

wall modulation with a small ratio of height to wavelength

is especially attractive because of its simplicity [5]. The

model neglects a so called resonant mode wakefield [6, 7]

because, as it was shown in [8], the contribution of the res-

onant mode is small for a shallow wall perturbation. The

wake derived in [5] has a singularity at the origin and shows

a typical resistive behavior. While the wake singularity is

integrable, and applied to a smooth beam profile gives a fi-

nite wakefield, it requires a special care in implementation

of the numerical algorithm. In addition, for some idealized

beam profiles, such as flat-top, the resulting bunch wake

exhibits non-physical singularities at the beam edges.

In this paper we generalize the result of [5] to include

the effect of the resonant mode. As it turns out this also

eliminates the wake singularity at the origin and facilitates

numerical calculations of wakes.

SINUSOIDAL WALL MODULATION
We consider a round pipe of radius a and represent the

roughness profile of the wall by a sinusoidal perturbation

r = a− h sinκz, (1)

where 2π/κ is the period of corrugation, and h is its am-

plitude. It is assumed that both the wavelength and the am-

plitude are small compared to the pipe radius, h � a and

κa� 1. This allows one to neglect in calculations the cur-

vature of the round wall and to consider the surface locally

as a plane one. It is also assumed that the corrugation is
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hκ� 1, (2)

that is the amplitude of the corrugation bumps is much

smaller then their period.

Using the perturbation theory developed in [1], the fol-

lowing expression for the wakefield (per unit length of

pipe) of a point charge was obtained in [5]

w(s) =
h2κ3

a
f(κs), (3)

where the function f is

f(ζ) =
1

2
√
π

∂

∂ζ

cos(ζ/2) + sin(ζ/2)√
ζ

, (4)

for ζ > 0 and f = 0 otherwise. The wake function

in (3) is defined so that positive w corresponds to the en-

ergy loss, and positive s corresponds to the test particle be-

hind the source one. The plot of this function is shown

in Fig. 1. One can see that f(ζ) has a singularity at the
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Figure 1: Function f(ζ).

origin, f ∝ ζ−3/2, similar to the resistive wall wake in a

round pipe in the standard approximation [9] of long wave-

lengths. The negative sign of the wake (3) near the origin

seems to suggest that the source charge gains energy in the

process of interaction with the wall. This conclusion how-

ever is incorrect as we will see below.

In a seemingly different approach to the problem, using

the concept of surface impedance of the sinusoidal corruga-

tion (1), an expression for the beam longitudinal impedance

shallow,
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was derived in [8],

Z(k) =
2ζ(k)

ac

1

1 + kaζ(k)/2i
, (5)

where k = ω/c and

ζ(k) =
1

4
kh2κ3/2

√
2k + κ− i

√
2k − κ√

4k2 − κ2
. (6)

In case 2k < κ the square roots of the negative values in

this expression should be taken with a positive imaginary

part. The impedance (5) is defined for positive k; for k < 0
one should use Z(−k) = Z∗(k). It was shown in [8] that

in the limit of long wavelengths, k � κ, the impedance (5)

supports a resonant mode previously found in [6, 7].

A natural question arises: how does the wake (3) relates

to the impedance (5)? As it turns out, the wake (3) can

be obtained from (5) if one neglects the term with ζ in the

denominator of (5), that is using

Z(k) =
2ζ(k)

ac
. (7)

This can be easily established by substituting the wake (3)

into the relation between the longitudinal wake and

impedance

Z(k) =
1

c

∫ ∞

−∞
w(s)eiksds, (8)

integrating (8) by parts, and using the integral∫∞
0

eiqss−1/2ds = (iπ/q)1/2.

AN IMPROVED WAKEFIELD MODEL
It is now clear that if one uses (5) rather than (7) for the

impedance, one obtains a more general than (3) expression

for the wake. As was mentioned above the impedance (5)

supports the resonant mode, hence the new wake will also

accommodate this feature. Substituting (5) into w(s) =
(c/2π)

∫∞
−∞ Z(k)e−iksdk we obtain

w(s) =
1

πa

∫ ∞

−∞

ζ(k)e−iksdk

1 + kaζ(k)/2i
=

4

a2
H(κs, r), (9)

where

H(τ, r) =
r

2π

∫ ∞

−∞

S(q)e−iqτdq

1− irqS(q)

=
r

π
Re

∫ ∞

0

S(q)e−iqτdq

1− irqS(q)
, (10)

with

S(q) = q

√
2q + 1− i

√
2q − 1√

4q2 − 1
, (11)

and

r =
1

8
h2κ3a. (12)

Note that in the region 0 < q < 1
2 the function S(q)

is purely imaginary, with the negative imaginary part that

takes values from 0 to −∞. This means that the integrand

in (10) has a pole in this region whose position q∗ is deter-

mined from the equation

q∗ImS(q∗) = −1

r
.

The integration path in (10) should bypath this pole in the

upper half-plane of the complex variable q as shown in

Fig. 2 by red line. The contribution of this pole to the wake

Im q

q� Re q

Figure 2: Integration contour (red) in the complex plane of

variable q. The blue line shows another possible integration

path.

w gives an oscillating with distance term ∝ e−iq∗κs which

is interpreted as a contribution of the resonant mode with

the wavenumber κq∗. In the limit r → 0, that is the limit

of extremely small amplitudes of the corrugation, q∗ → 1
2

and the synchronous mode has a wavelength equal to twice

the wavelength of the corrugation. In practice, a more con-

venient for integration path can be chosen, as shown by the

blue line in Fig. 2; such a path was used in this work for

calculation of wakes presented in the subsequent sections.

Asymptotically, for q → ∞, the function S increases

as S ∝ √
q which results in a rather poor conver-

gence of the integral (10) at infinity. The convergence

can be accelerated by noting that for positive τ and r,

Re
∫∞
0

e−iqτdq(1 + irq)−1 = 0, and adding this integral

to (10):

H(τ, r) =
r

π
Re

∫ ∞

0

e−iqτdq
S(q) + 1

[1− irqS(q)](1 + irq)
.

(13)

The integrand in (13) decays at q → ∞ much faster, as

∝ 1/q2, which improves the convergence of the integral

and facilitates numerical calculation of the wake.

Note that the wakefunction defined by (9) and (13) is fi-

nite (and positive) at s = 0. The positive wake corresponds

to the energy loss of the charge due to the wake, and re-

solves the issued raised in the previous section in connec-

tion with the negative singularity of function f(ζ). Also

note that H(0, r) = 1 which means that the wake at the

origin is w(s = 0) = 4/a2. As discussed in Ref. [10],

this value, arising in many problems in round geometry, is

universal for the wake at the origin.

In some cases, for numerical calculations of the wake it

is convenient to deal with the integrated wake

g(s) =

∫ s

0

w(s′)ds′ =
4

κa2
G(κs, r), (14)
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where

G(τ, r) =

∫ τ

0

H(τ ′, r)dτ ′. (15)

Function G can be computed directly from the Fourier rep-

resentation (13)

G(τ, r) =
r

π
Im

∫ ∞

0

dq
(1− e−iqτ )(S(q) + 1)

q[1− irqS(q)](1 + irq)
. (16)

Again, the integration here bypasses the pole at q = q∗ as

shown in Fig. 2.

EXAMPLE OF SWISSFEL WAKE
We consider here two practical examples relevant for the

SwissFEL project at PSI [11]. For the roughness param-

eters we assume h = 100 nm, 2π/κ = 10 micron with

the pipe radius a = 2 mm. Substituting these numbers

into (12) gives r = 0.62. The plot of the point charge wake

for this case computed with the help of Eqs. (9) and (13) is

shown in Fig. 3 by blue line. For comparison, the red line
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Figure 3: Wake for a point charge for parameters listed in

the text.

shows the singular wake given by (3) and (4). Note that

the new wake is positive near the origin, as discussed in

the previous section. Also noticeable are more pronounced

oscillations of the new wake which are due to the resonant

mode.

The wake for a Gaussian bunch with Q = 200 pC and

the rms bunch length of 8 microns (corresponding to the

peak current of 3 kA) is shown in Fig. 4 by the blue line.

The red line shows the bunch wake calculated with the sin-

gular Green function (3). The difference in this case be-

tween the two models is not large.

In the low-charge operational mode the bunch charge is

10 pC and the rms bunch length is 0.8 microns (correspond-

ing to the peak current of 1.5 kA). The wake calculated in

this case is shown in Fig. 5 with the blue and red lines cor-

responding to the new and old wake models, respectively.

Notice a considerable difference between the models. It
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Figure 4: Wake of a Gaussian bunch with Q = 200 pC. The

red line is computed with the singular Green function (3)

and the blue line is computed with the new Green func-

tion (9). The dashed line shows the Gaussian bunch profile

with the bunch head on the right.

turns out that such a short bunch excites the resonant mode

(the mode is clearly visible behind the bunch, in the region

not shown in Fig. 5).
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Figure 5: Wake of a Gaussian bunch with Q = 10 pC. The

red line is computed with the singular Green function (5)

and the blue line is computed with the new Green func-

tion (9). The dashed line shows the Gaussian bunch profile

with the bunch head on the right.

EXAMPLE OF NGLS WAKE
In another example we calculated the roughness wake-

field for the soft x-ray FEL project being developed at

Berkeley National Accelerator Laboratory [12]. Three dif-

ferent amplitudes of the corrugation were considered: h =
100 nm, h = 200 nm and h = 500 nm. In this case we

assumed that the rms roughness angle is 10 mrad, corre-

sponding to the product κh =
√
2 ·10−2. Respectively, for
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each amplitude we found the wavelength of the corrugation

λ = 2π/κ: λ = 44 μm, λ = 88 μm and λ = 220 μm.

For the electron beam profile in the NGLS undulator we

used the result of a start-to-end computer simulation [13]

shown in Fig. 7. The simulated beam profile was smoothed
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Figure 6: Beam profile at NGLS used for calculation of the

wake. The red curve shows the original simulation, and the

blue curve is a smoothed profile used for calculation of the

wakes. The head of the bunch is on the right.

out as shown in Fig. 6 for the wake calculations.

The wakefield for the parameters indicated at the begin-

ning of this section are shown in Figs. 7-9.
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Figure 7: Wakefield for h = 100 nm. The red dashed curve

shows the beam profile.

The amplitude of the wake somewhat increases with the

amplitude of sinusoidal wall modulation, however, the ef-

fect is not strongly pronounced due to the simultaneous in-

crease of the roughness wavelength.

CONCLUSIONS
In this paper we derived a new improved model for the

roughness wake in the model where roughness is approxi-

mated by a sinusoidal wall modulation with a given ampli-

tude and wavelength. The new wake is finite at the origin
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Figure 8: Wakefield for h = 200 nm. The red dashed curve

shows the beam profile.
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Figure 9: Wakefield for h = 500 nm. The red dashed curve

shows the beam profile.

and incorporates a so called resonant mode. An analytical

expression for the wake Green function is derived and ap-

plied to calculation of several examples for the SwissFEL

and NGLS projects.
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