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INTRODUCTION

We summarize our mathematical study in [1] on pla-
nar motion of energetic electrons moving through a planar
dipole undulator, excited by a fixed planar polarized plane
wave Maxwell field in the X-Ray FEL regime.

We study the associated 6D Lorentz system as the wave-
length of the traveling wave varies. The 6D system is re-
duced, without approximation, to a 2D system. There are
two small parameters in the problem, 1/γc, where γc is a
characteristic energy γ, and ε which is a measure of the
energy spread. Using these parameters, the 2D system is
then transformed into a system for a scaled energy devia-
tion, χ, and a generalized ponderomotive phase, θ, both of
which are slowly varying. When the two small parameters
are related the system is in a form for an application of the
Method of Averaging (MoA); a rigorous long time pertur-
bation theory which leads to error bounds relating the exact
and approximate solutions. As the wavelength varies the
system passes through resonant and nonresonant zones and
we develop nonresonant and near-to-resonant normal form
approximations based on the MoA. For a special initial
condition, on resonance, we obtain the well-known FEL
pendulum system.

In [1] we prove nonresonant and near-to-resonant first-
order averaging theorems, in a novel way, which give opti-
mal error bounds for the approximations. The nonresonant
case is an example of quasiperiodic averaging where the
small divisor problem enters in the simplest possible way
and the near-to-resonant case is an example of periodic av-
eraging. To our knowledge the analysis has not been done
with the generality in [1] nor has the standard FEL pen-
dulum system been derived with error bounds. Our main
emphasis here is to summarize the derivation of the normal
form approximations, discuss their behavior and state in a
rough way the results of the error analysis. The FEL pen-
dulum appears on resonance in the near-to-resonant normal
form and we discuss the near-to-resonant behavior with
phase plane plots.
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GENERAL PLANAR UNDULATOR
MODEL

In this section we state the basic problem and put the
equations of motion in a standard form for the MoA.

Lorentz Force Equations
The 6D Lorentz equations of motion in SI units with z

as the independent variable are

dx

dz
=

px
pz

,
dy

dz
=

py
pz

,
dt

dz
=

mγ

pz
, (1)

dpx
dz

= −e

c
[cBu cosh(kuy) sin(kuz)

−py
pz

cBu sinh(kuy) cos(kuz)

+Er(
mγc

pz
− 1)h(α̌(z, t))] , (2)

dpy
dz

= −e

c

px
pz

cBu sinh(kuy) cos(kuz) , (3)

dpz
dz

= −e

c
[−px

pz
cBu cosh(kuy) sin(kuz)

+Er

px
pz

h(α̌(z, t))]. (4)

Here (x, y, z) are Cartesian coordinates, z is the distance
along the undulator, t(z) is the arrival time at z, (px, py, pz)
are Cartesian momenta, γ2 = 1+p·p/m2c2,m is the elec-
tron mass, −e is the electron charge and c is the vacuum
speed of light.
The planar undulator model magnetic field which we use

satisfies the Maxwell equations and is given by

Bu = −Bu

·[cosh(kuy) sin(kuz)ey + sinh(kuy) cos(kuz)ez] , (5)

where Bu > 0 is the undulator strength, ku > 0 is the
undulator wave number and ex, ey, ez are the standard unit
vectors.
The traveling wave radiation field we choose is also a

Maxwell field and is given by

Er = Erh(α̌)ex ,

Br =
1

c
(ez ×Er) =

Er

c
h(α̌)ey ,

(6)
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where Er > 0 is a constant, h is a real valued function on
R, and

α̌(z, t) = kr(z − ct) , (7)

with kr > 0. In this section we will keep h general, in the
next section we treat the monochromatic case where

h(α̌) = cos(να̌) , (8)

and where we derive a generalized pendulum system.

Standard Form for Method of Averaging
We confine ourselves to planar motion with no approx-

imation since y(0) = py(0) = 0 implies that y(z) =
py(z) = 0. Thus the six ODE’s (1)-(4) reduce to four.
The righthand sides of (1)-(4) are independent of x thus
the x equation need not be considered. The quantity
px/mcK − cos(kuz) − (Er/cBu)(ku/kr)H(α) is con-
served where H is any antiderivative of h, i.e., H ′ = h
thus the px ODE can be eliminated. Only the two ODE’s
for t and pz remain and everything can determined from
them.
We now scale z by defining ζ = kuz, replace the depen-

dent variable t by α where

α(ζ) := α̌(z, t(z)) = kr(z − ct(z)) , (9)

and replace pz by γ. We thus obtain our basic 2D system

dα

dζ
=

kr
ku

(1− mγc

pz
) , (10)

dγ

dζ
= − eEr

kumc2
px
pz

h(α) , (11)

where px and pz must be replaced by

px = px(0) +mcK

·
(
cos(kuz)− 1 +

Er

cBu

ku
kr

[H(α)−H(α(0))]

)
,

pz =
√
m2c2(γ2 − 1)− p2x ,

K =
eBu

mcku
= undulator parameter .

Two small parameters, 1/γc and ε, are introduced via

γ = γc(1 + η) = γc(1 + εχ) , (12)

where γc is characteristic value of γ, e.g. its mean, and ε
is a characteristic spread of the energy deviation η = εχ
so that χ is O(1). Thus χ is an O(1) dependent variable
replacing γ.
An asymptotic expansion, for γc large and ε small in

(10),(11) with γ replaced by (12), yields

[α+Q(ζ)]′ = εKrq(ζ)χ+O(
1

γ2
c

) +O(ε2) , (13)

χ′ = −K2 E
εγ2

c

(cos ζ +ΔPx0)h(α)

+O(1/γ2
c ) +O(1/εγ4

c ) , (14)

where

Kr =
kr

kuγ2
c

, E =
Er

cBu

, ΔPx0 =
px(0)

mcK
− 1 ,

q(ζ) = 1 +K2(cos ζ +ΔPx0)
2 ,

Q′(ζ) =
Kr

2
q(ζ) , Q(0) = 0 .

To transform (13),(14) into a standard form for the MoA
slowly varying dependent variables are needed. Clearly,
α+Q(ζ) is slowly varying and we anticipate that χ will be
slowly varying, i.e., E/εγ2

c small.
Thus we define

θ = α+Q(ζ) , (15)

and (13),(14) become

θ′ = εKrq(ζ)χ +O(1/γ2
c ) +O(ε2) , (16)

χ′ = −K2 E
εγ2

c

(cos ζ +ΔPx0)h(θ −Q(ζ))

+O(1/γ2
c ) +O(1/εγ4

c ) , (17)

with initial conditions as in the exact ODE’s, i.e., θ(0, ε) =
θ0, χ(0, ε) = χ0. To obtain a system where θ and χ interact
with each other in first-order averagingwemust balance the
O(ε) term in (16) with the O(E/εγ2

c ) in (17). In this spirit
we relate ε and γc by choosing

ε =
√
E 1

γc
. (18)

It is this balance that will lead to the FEL pendulum equa-
tions in the next section. In this distinguished case the sys-
tem (16),(17) can be written

θ′ = εKrq(ζ)χ+ O(ε2) , (19)
χ′ = −εK2(cos ζ +ΔPx0)h(θ −Q(ζ)) +O(ε2) , (20)

and these are now in a standard form for the MoA.
The θ defined by (15) is a generalization of the so-called

ponderomotive phase. Here it arises naturally in the pro-
cess of transforming to slowly varying coordinates and
finding the distinguished relation between ε and γc in (18).
In standard treatments it is introduced heuristically to max-
imize energy transfer.
We note that E does not need to be small for ε to be

small, thus our results may be relevant even in the high
gain saturation regime.

MONOCHROMATIC CASE
The Basic ODE’s for the Monochromatic Radia-
tion Field
From now on the radiation field in (6) is monochromatic,

i.e., h,H have the form

H(α̌) = (1/ν) sin(να̌) , h(α̌) = cos(να̌) , (21)
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where ν ≥ 1/2. We also choose

Kr =
2

q̄
, (22)

where

q̄ = lim
T→∞

[
1

T

∫ T

0

q(ζ)dζ]

= 1 +
1

2
K2 +K2(ΔPx0)

2 . (23)

The ODE’s (19),(20) now become

θ′ = εf1(χ, ζ) +O(ε2) , (24)
χ′ = εf2(θ, ζ, ν) +O(ε2) , (25)

where

f1(χ, ζ) =
2q(ζ)

q̄
χ ,

f2(θ, ζ, ν) = −K2(cos ζ +ΔPx0)

· cos
(
νθ − νζ − νΥ0 sin ζ − νΥ1 sin 2ζ

)

= −K2

2
eiνθ

∑
n∈Z

ĵj(n; ν,ΔPx0)e
i(n−ν)ζ + cc ,

and where

Υ0 =
2

q̄
K2ΔPx0 , Υ1 =

q̄K2

4
. (26)

Note that f1(χ, ζ) and f2(θ, ζ, ν) are quasiperiodic in ζ
since f1 is 2π periodic and f2 has two base periodicities,
2π and 2π/ν.
Averages needed for the normal form analysis are:

f̄1(χ) = lim
T→∞

[
1

T

∫ T

0

f1(χ, ζ)dζ] = 2χ , (27)

f̄2(θ, ν) = lim
T→∞

[
1

T

∫ T

0

f2(θ, ζ, ν)dζ]

=

{
0 if ν �∈ N

−K2ĵj(k; k,ΔPx0) cos(kθ) if ν = k ∈ N ,
(28)

where N is the set of positive integers.

Δ-nonresonant Normal Form
The Δ-nonresonant case is an example of quasiperi-

odic averaging with a small divisor problem of very simple
structure. This case is defined by: ν ∈ [k +Δ, k + 1−Δ]
with Δ ∈ (0, 0.5) and k ∈ N.
An averaging normal form approximation (v1, v2) to

(θ, χ) in (24),(25) is obtained by dropping the O(ε2) terms
and averaging the O(ε) terms over ζ by holding the slowly
varying quantities θ, χ fixed. Thus if ν �∈ N, using
(27),(28), the Δ-nonresonant normal form system is

v′1 = ε2v2 , v′2 = 0 , (29)

and the same initial conditions as in the exact ODE’s, i.e.,
v1(0, ε) = θ0, v2(0, ε) = χ0. The Δ-nonresonant case is
natural if |ν − k| is “big ”.
In [1] we obtain explicit error bounds on the normal form

approximation. In fact there exists an ε independent con-
stant C(T ) such that

|θ(ζ, ε) − v1(ζ, ε)| ≤ C(T )
ε

Δ
,

|χ(ζ, ε)− v2(ζ, ε)| ≤ C(T )
ε

Δ
,

for 0 ≤ ζ ≤ T/ε with ε sufficiently small. Note that in the
“nonresonant case”, i.e., when ν ≥ 1/2 with ν �∈ N, there
exists Δ ∈ (0, 0.5) and k ∈ N such that ν ∈ [k + Δ, k +
1−Δ]. However the error bound increases as Δ → 0, i.e.,
as ν moves toward resonance.

Near-to-resonant Normal Form
In this case we exploreO(ε) neighborhoods of the ν = k

resonances. We write

ν = k + εa, (30)

where k ∈ N, a ∈ [−1/2, 1/2] and derive a “near-to-
resonant” normal form system. Here a is a measure of the
distance of ν from k.
The O(ε) neighborhood of k is natural in first-order av-

eraging, since if |ν − k| is too small then the normal form
will be close to the resonant normal form of (36),(37) and
if |ν − k| is too big then ν will be in the Δ-nonresonant
regime. Equation (30) clearly includes the resonant case
for a = 0.
We write (24),(25) as:

θ′ = εf1(χ, ζ) +O(ε2) , (31)
χ′ = εfR

2 (θ, εζ, ζ, k, a) +O(ε2) , (32)
fR
2 (θ, τ, ζ, k, a) = −K2(cos ζ +ΔPx0)

· cos
(
k[θ − ζ −Υ0 sin ζ −Υ1 sin 2ζ]− aτ

)

= −K2

2
exp(i[kθ − aτ ])

·
∑
n∈Z

ĵj(n; k,ΔPx0)e
iζ[n−k] + cc . (33)

Note that f1(χ, ζ), fR
2 (θ, τ, ζ, k, a) are 2π periodic in

ζ. The near-to-resonant normal form ODE’s are obtained
from (31),(32) by dropping the O(ε2) terms and averag-
ing the righthand sides over ζ holding the slowly varying
quantities θ, χ, εaζ fixed. We thus obtain

v′1 = 2εv2 , (34)
v′2 = −εK2ĵj(k; k,ΔPx0) cos(kv1 − εaζ) , (35)

and the same initial conditions as in the exact ODE’s, i.e.,
v1(0, ε) = θ0, v2(0, ε) = χ0. For a = 0, (34),(35) become
the so-called “resonant” normal form

v′1 = 2εv2 , (36)
v′2 = −εK2ĵj(k; k,ΔPx0) cos(kv1) . (37)
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For ΔPx0 = a = 0, (34),(35) are the standard FEL pendu-
lum equations whence θ generalizes the so-called pondero-
motive phase. Note also that forΔPx0 = 0:

ĵj(k; k, 0) ={
1
2 (−1)n[Jn(xn)− Jn+1(xn)] if k = 2n+ 1
0 if k even ,

where xn = (2n + 1)Υ1 and n = 0, 1, ... with Jm=m-
th-order Bessel function of first kind. In the special case
when K2ĵj(k; k,ΔPx0) = 0 the ODE’s (34),(35) are the
same as the nonresonant equations (29) and this occurs,
e.g., whenΔPx0 = 0 and k even.
In [1] we obtain explicit error bounds on the normal form

approximations. We find that there exists an ε independent
constant CR(T ) such that

|θ(ζ, ε)− v1(ζ, ε)| ≤ CR(T )ε ,

|χ(ζ, ε)− v2(ζ, ε)| ≤ CR(T )ε ,

(38)

for 0 ≤ ζ ≤ T/ε with ε sufficiently small.
A phase plane portrait for the system (34), (35) is shown

in Figs. 1 and 2 with k = 1 and K2ĵj(k; k,ΔPx0) = 2.
For the resonant case, a = 0, we clearly see a pendulum
behavior exhibiting four types of motion (libration, sep-
aratrix motion, rotation, and fixed point) and in the sub-
case a = 0,ΔPx0 = 0 this is the standard FEL pendu-
lum structure. To help understand the near-to-resonance
behavior we have superposed orbits for a = 1/3 resp.
a = 1/6 for four initial conditions with v1(0) = −3π/2.
For v2(0) = a/2, v2 is constant, for v2(0) starting on top
of the libration curve we see the spiral motion moving to
the right, for v2(0) starting on the lower rotation curve we
see a modification of the resonant rotation moving to the
left and for v2(0) starting on the upper rotation curve we
see a modification of the resonant rotation moving to the
right. The orbits for a = 1/3 resp. a = 1/6 are computed
from (34),(35) with Matlab’s ode45 solver. Details of the
near-to-resonant behavior are discussed in [1] by writing
the solution of (34),(35) in terms of solutions of the simple
pendulum equation.

COMMENTS AND FUTUREWORK
In the collective case there is a continuous range of fre-

quencies and so it is natural to ask, “what happens in the
noncollective case considered in this paper if there is a con-
tinuous range of frequencies?”. In this situation h can be
modeled as

h(α) =

∫
∞

−∞

h̃(ξ) exp(−iξα)dξ . (39)

For h̃(ξ) = [δ(ξ−ν)+δ(ξ+ν)]/2, where δ is the delta dis-
tribution, (39) gives h(α) = cos(να) as in the monochro-
matic case of (21), and there are resonances for integer ν.
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Figure 1: Phase plane orbits on resonance (a = 0: solid
magenta, blue, red curves and five black fixed points) and
near-to-resonance (a = 1/3: green solid and dotted ma-
genta and red curves). k = 1,A = 2.
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Figure 2: Phase plane orbits on resonance (a = 0: solid
magenta, blue, red curves and five black fixed points) and
near-to-resonance (a = 1/6: green solid and dotted ma-
genta and red curves). k = 1,A = 2.

However we have found that for continuous h̃ the average
of (cos ζ +ΔPx0)h(θ −Q(ζ)) is zero, i.e.,

lim
T→∞

[
1

T

∫ T

0

(cos ζ +ΔPx0)h(θ −Q(ζ))dζ] = 0 . (40)

Thus the averaging normal form for (19),(20) is just the
nonresonant normal form and thus a continuous h̃(ξ), lo-
calized for example near the ν = 1 (monochromatic) reso-
nance, washes out the effect of that resonance in the first-
order averaging normal form. This does not mean that there
is no resonant behavior near ν = 1 because we have not yet
proved that the normal form gives a good approximation,
i.e., it may not be possible to prove an averaging theorem.
We are pursuing this. However, even if an averaging theo-
rem can be proven there might still be an effect in second-
order averaging.
Secondly it would be interesting to include the y dynam-

ics, but not assuming the zero initial conditions in y, thus
treating the full 3D dynamics.
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Thirdly, it would be interesting to study the helical un-
dulator as we have done here for the planar undulator, i.e.,
via first-order averaging.
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