
PARAXIAL APPROXIMATION IN CSR MODELING
USING THE DISCONTINUOUS GALERKIN METHOD∗

D. A. Bizzozero† , J. A. Ellison, K. A. Heinemann, S. R. Lau
Department of Mathematics and Statistics, University of New Mexico,

Albuquerque, New Mexico 87131, USA

Abstract
We continue our study [1, 2] of CSR from a bunch

moving on an arbitrary curved trajectory. In that study
we developed an accurate 2D CSR Vlasov-Maxwell code
(VM3@A) and applied it to a four dipole chicane bunch
compressor. Our starting point now is the well-established
paraxial approximation [3–7] with boundary conditions
for a perfectly conducting vacuum chamber with uniform
cross-section. This is considerably different from our
previous approach [1, 2] where we calculated the fields
from an integral over history, using parallel plate boundary
conditions. In this study, we present a Discontinuous
Galerkin (DG) method for the paraxial approximation
equations. Our basic tool is a MATLAB DG code on a
GPU using MATLAB’s gpuArray; the code was devel-
oped by one of us (DB). We discuss our results in the
context of previous work and outline future applications
for DG, including a Vlasov-Maxwell study.

STATEMENT OF THE PROBLEM
Statement of the Mathematical Problem

We study the initial boundary value problems for two
nonhomogeneous Schrödinger type equations which arise
in a paraxial approximation to Maxwell’s equations. The
PDEs are

∂sE
r
x =

i

2k
∇2

⊥E
r
x +

ikx

ρ
Er

x +
ikx

ρ
Eb

x(x, y) (1a)

∂sE
r
y =

i

2k
∇2

⊥E
r
y +

ikx

ρ
Er

y +
ikx

ρ
Eb

y(x, y), (1b)

on the domain 0 ≤ s ≤ L,−a ≤ x ≤ a,−b ≤ y ≤ b. Here
the 2D Laplacian is ∇2

⊥
:= ∂2

x + ∂2
y , the real parameters

k ∈ R and ρ > 0, and the nonhomogeneous terms are
determined by

Eb
x = C

x

x2 + y2
, Eb

y = C
y

x2 + y2
, (2)

where C is defined in the next subsection. The boundary
conditions for Er

x = Er
x(x, y, s; k) are

∂xE
r
x = ∂yE

b
y, on x = ±a

Er
x = −Eb

x, on y = ±b,
(3)

∗Work supported by DOE under DE-FG-99ER41104
† dbizzoze@math.unm.edu

and the boundary conditions on Er
y = Er

y(x, y, s; k) are

Er
y = −Eb

y, on x = ±a

∂yE
r
y = ∂xE

b
x, on y = ±b.

(4)

The initial conditions are given uniquely by

∇2
⊥E

r
x = 0, ∇2

⊥E
r
y = 0, at s = 0, (5)

with the same boundary conditions, i.e. (3), (4). We note
that the above two initial boundary value problems are un-
coupled and that the boundary and initial conditions are
independent of k.

In addition, the field quantity Er
s = Er

s (x, y, s; k), de-
fined by

Er
s =

i

k
(∂xE

r
x + ∂yE

r
y), (6)

is needed for 0 ≤ s ≤ L in order to compare with the
impedance calculation in [5]. The impedance in our nota-
tion is given by

Z = −
Z0

2πC

∫ ∞

0

dsEs(0, 0, s; k), (7)

where Z0 is the free space impedance, C is the parameter
in (2), and the calculation of Es(0, 0, s; k) for s ≥ L is
discussed in the numerical implementation section. Note
that C simply scales the fields.

Statement of the Physical Problem
Derivations of the paraxial approximation can be found

in [3], [6] and [7]. The starting point is Maxwell’s equa-
tions with a source given by a line charge moving at near
the speed of light, on a circular arc of radius ρ and length
L, and in a perfectly conducting rectangular vacuum cham-
ber. As in [3], [6] and [7], we take the special case where
the line charge is reduced to a single point. Maxwell equa-
tions are written in beam frame coordinates (x, y, s) where
the arc is in the (x, s) plane, s is the distance along the arc,
and (x, y) are perpendicular to the arc. Thus the electric
field can be written

E(x, y, s, t) = (Ex, Ey, Es). (8)

where (Ex, Ey, Es) are the components of the field along the
unit vectors (ex(s), ey, es(s)) along the reference curve

MOPSO06 Proceedings of FEL2013, New York, NY, USA

ISBN 978-3-95450-126-7

32C
op

yr
ig

ht
c ○

20
13

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Beam Physics for FEL



at x = y = 0. The field E is transformed to E =
E(x, y, s; k), where they are related by a Fourier type trans-
form

E(x, y, s, t) ∝

∫ ∞

−∞

dkE(x, y, s; k)eik(s−ct). (9)

Since the particle is moving near the speed of light, E is ex-
pected to be slowly varying in s. Ignoring second deriva-
tives in s and assuming a/ρ is small, (1) and (6) are ob-
tained where

E = (Ex, Ey, Es), (10)

and where

Ex = Er
x + Eb

x, Ey = Er
y + Eb

y, Es = Er
s + Eb

s.

(11)

Eb was introduced in [3] to reduce the effect of the singu-
larity in E, and Eb

s is taken as 0.
Note that the electric field E satisfies –via (3),(4),(6)– the

boundary conditions of a perfect conductor at the boundary
∂Ω of the vacuum chamber Ω := [−a, a] × [−b, b], where
∂Ω consists of those points of Ω for which either x = ±a
or y = ±b. The initial conditions are defined assuming
that the fields have reached a steady-state from an infinite
straight prior to entering the bend. The C in (2) is a physi-
cal parameter containing the bunch charge, see [3, 6, 7].

NUMERICAL IMPLEMENTATION
We use the discontinuous Galerkin (DG) method, a high-

order method which shares features with both finite ele-
ment and finite volume methods. It has seen rapid develop-
ment with a myriad of applications over the past 15 years,
however, we are not aware of its use in the beam physics
community. We therefore give a short overview of our ap-
proach, closely following the treatment of the heat equa-
tion in [8]. DG formulations typically involve decompo-
sition of the computational domain Ω into triangular ele-
ments (in 2D), local representations of the relevant oper-
ators and solution on each element, and coupling of ad-
jacent elements through flux terms along common bound-
aries. The element-wise local solutions are represented by
polynomials, but these local solutions may be discontinu-
ous across elements. See Refs. [8–11] for more thorough
and general treatments of DG formulations.

Overview of our DG Approach
To make the discussion of the DG approach simpler, we

introduce dimensionless variables through the rescalings

x → aξ, y → aη, s → 2ka2ζ, Er
x → Cu/a,

but in this subsection we will cavalierly write (s, x, y) for
the dimensionless variables (ζ, ξ, η). In terms of these vari-
ables (1a) and (3) respectively become

−i∂su = ∇̃2
⊥u+

2k2a3

ρ

(
xu+

x2

x2 + y2
)
, (12)

and

∂xu = ∂y
y

x2 + y2
on x = ±1

u = −
x

x2 + y2
on y = ±

b

a
.

(13)

Likewise, the initial condition (5) becomes

∇̃2
⊥u|s=0 = 0, (14)

with the same boundary conditions.
Similarly, with the rescaling Er

y → Cu/a, (1b) and (4)
become

−i∂su = ∇̃2
⊥u+

2k2a3

ρ

(
xu+

xy

x2 + y2
)
, (15)

and

u = −
y

x2 + y2
on x = ±1

∂yu = ∂x
x

x2 + y2
on y = ±

b

a
.

(16)

The initial condition does not change, and we continue to
write (s, x, y) in place of (ζ, ξ, η). We note that u only
depends parametrically on 2k2a3/ρ and b/a, and that the
integration domain 0 ≤ s ≤ L becomes 0 ≤ s ≤ L/2ka2.
The parameter C only enters into the magnitude of the
fields E.

Both (12) and (15) can be written as a system,

−i∂su = ∂xqx + ∂yqy + F, qx = ∂xu, qy = ∂yu, (17)

where F represents either of the last terms in (12,15). We
partition Ω into triangular elements, focus on a single el-
ement D ⊂ Ω, and assume that on D the local solution
u ∈ PN (D) is polynomial of degree N . Multiplication of
each equation (17) by its own test polynomial v ∈ PN (D)
and subsequent integration over D yields

−i

∫
D

dA(v∂su) =

∫
D

dA(v∂xqx + v∂yqy + vF )∫
D

dA(vqx,y) =

∫
D

dA(v∂x,yu),

(18)

where a subscript x, y indicates two equations, one for x
and one for y. The integration formulas in (18) are exact,
but involve only the local polynomials u, qx, qy , and v on
D. To couple adjacent elements, we now replace the above
equations by

−i

∫
D

dA(v∂su) =

∫
D

dA(v∂xqx + v∂yqy + vF )

−

∫
∂D

dLv
[
nx(qx − q∗x) + ny(qy − q∗y)

]
∫
D

dA(vqx,y) =

∫
D

dA(v∂x,yu)−

∫
∂D

dLnx,yv(u− u∗).

(19)

Proceedings of FEL2013, New York, NY, USA MOPSO06

Beam Physics for FEL

ISBN 978-3-95450-126-7

33 C
op

yr
ig

ht
c ○

20
13

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



In these formulae dL and (nx, ny) respectively specify the
arc-length measure and normal vector for ∂D. Moreover,
the terms u∗, q∗x, q∗y are numerical expressions which de-
pend not only on the local solutions u, qx, qy on D but also
on the solutions belonging to adjacent elements. We define
these expressions below. One way to “derive” (19) from
(18) is to first integrate by parts, shifting all derivatives
onto each test polynomial v. This process generates bound-
ary integrals. Next, in these boundary integrals one makes
the intermediate replacements u, qx, qy → u∗, q∗x, q

∗
y , and

then invokes a second round of integration by parts to arrive
at (19). Of course, without the intermediate replacements,
this process would arrive back at (18), as is easily seen by
taking (u∗, q∗x, q

∗
y) = (u, qx, qy) in (19).

To obtain matrix formulas from (19), we first express the
local solution and each test polynomial as follows:

u(x, y) =

Np∑
j=1

uj�j(x, y), v(x, y) = �i(x, y), (20)

with the expansions for qx and qy similar to the one for u.
Here, Np denotes the number of nodes on the element D,
which is related to the polynomial order N through Np =
(N+1)(N+2)/2. Moreover, �i(x, y) is the Lagrange basis
polynomial which is 1 at the ith node (xi, yi) ∈ D, but
zero at all other nodes (xj , yj), j 
= i. Since �i ∈ PN (D),
our choice for the test polynomial v is permissible, and by
taking i ∈ {1, . . . , Np} as arbitrary we sample the whole
test space. With expansion coefficients as in (20), we define
a corresponding vector, for example,

u = (u1, u2, . . . , uNp
)T . (21)

Substitution of (20) and the similar expansions for qx and
qy into (19) yields

−i
du

ds
= M−1Sxqx +M−1Syqy + F

−M−1

∫
∂D

dLnx(qx − q∗

x)� (22a)

−M−1

∫
∂D

dLny(qy − q∗

y)�

qx = M−1Sxu−M−1

∫
∂D

dLnx(u− u∗)� (22b)

qy = M−1Syu−M−1

∫
∂D

dLnx(u− u∗)�. (22c)

In these expressions the mass M and stiffness Sx, Sy ma-
trices are defined as

Mij =

∫
D

dA�i�j , (Sx,y)ij =

∫
D

dA(∂x,y�i)�j . (23)

Moreover, � = (�1, �2, . . . , �Np
)T . To reach the given form

(22a,b,c) of the local semi-discrete equations, we have in-
verted the local mass matrix, and to put these equation into
their final form we now define u∗, q∗x, q∗y as follows:

q∗x,y = {{qx,y}} − τ [[u]]x,y, u∗ = {{u}}.

The {{·}} and [[·]] operations respectively denote the av-
erage value and jump in a value across a boundary. For
example, if two elements D+ and D− share a common
boundary segment ∂D±, then along the segment q∗x =
1
2 (q

+
x + q−x ) − τ(n−

x u
− + n+

x u
+). For the penalty pa-

rameter τ we use the expression described on p263 of [8].
Every element follows the same construction yielding a to-
tal Np × K nodes for Ω, where K is the total number of
elements.

Numerical Computation of Fields and
Impedances

This section presents the steps used to obtain the elec-
tric fields and longitudinal impedances for the curved and
straight portions of the vacuum chamber. This 4 step pro-
cess is repeated for every wave number k. We now return to
the notation in the section on the statement of the problem,
since our actual code employs the physical variables.

Construction of the Elements and Matrices This
step begins by dividing the rectangular cross-section Ω of
the vacuum chamber into rectangles and then subdividing
each rectangle diagonally into two triangles. The number
of elements is K = 2N res

x N res
y , with N res

x and N res
y de-

noting the resolution of elements in the x and y directions.
Figure 1 shows an example configuration of nodes and ele-
ments with N res

x = 6, N res
y = 2, and N = 4. The mass and

Figure 1: Example of a 24 element domain with 15 nodes
per element. The nodes (red dots) are not equally spaced.

stiffness matrices are computed via (23). These matrices
are then used to obtain the collocation derivative matrices
Dx = M−1Sx, Dy = M−1Sy appearing in (22).

Construction of the Initial Data The initial condi-
tions for the transverse fields Er

x,y are solved numeri-
cally with the DG Poisson solver described on p275-280
of [8]. Next, Er

s is computed with the derivative matrices
as [cf. Eq. (6)]

Er
s =

i

k
(DxE

r
x +DyE

r
y). (24)

Evolution of the Fields The transverse fields Er
x,y are

evolved using the classical 4th order explicit Runge-Kutta
scheme. The time step for the evolution is first determined
by

Δs = CCFL · k · r2min, (25)

MOPSO06 Proceedings of FEL2013, New York, NY, USA

ISBN 978-3-95450-126-7

34C
op

yr
ig

ht
c ○

20
13

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Beam Physics for FEL



where rmin is minimal distance between the nodes. Note
that rmin decreases quadratically with the order N ; there-
fore, for large N this time step restriction is severe. We
have typically taken the CFL constant CCFL as 0.25 for
our computations.

The evaluations of du/ds required by the Runge-Kutta
scheme are implemented as follows: qx and qy are ob-
tained from (22b,c), with the results then substituted into
(22a). Finally, Er

s is computed from Er
x,y at each timestep

with (24).

Computation of the Impedance We separate the
impedance integral in (7) into two parts, Z = Zb + Zs,
where

Zb = −
Z0

2πC

∫ L

0

dsEs(0, 0, s; k)

Zs = −
Z0

2πC

∫ ∞

L

dsEs(0, 0, s; k).

(26)

Throughout the evolution we record Er
s at the origin. Zb is

then approximated by the trapezoidal rule

Zb ≈ −
Z0

2πC
Δs

[1
2
Es(0, 0, 0; k) +

1

2
Es(0, 0, L; k)

+

Nsteps−1∑
n=1

Es(0, 0, nΔs; k)
]
.

(27)

Following [7], we evaluate the remaining integral Zs as a
mode expansion

Zs ≈
Z0

2πC

M∑
m=1

P∑
p=1

Dmp sin
(mπ

2

)
sin

(pπ
2

)
, (28)

where the coefficients Dmp are determined by the trans-
verse fields Er

x,y at the end of the bend through the follow-
ing expressions:

Dmp =
8(Ampkx +Bmpky)

k2x + k2y

Amp =
1

ab

∫∫
Ω

dAEr
x(x, y, L) cos(kxx) sin(kyy)

Bmp =
1

ab

∫∫
Ω

dAEr
y(x, y, L) sin(kxx) cos(kyy)

kx =
mπ

2a
, ky =

pπ

2b
.

(29)

The values of M and P should ideally be infinite; however,
in practice, M � (N + 1)N res

x and P � (N + 1)N res
y are

sufficient for a good approximation.

NUMERICAL RESULTS
DG Results

Although comprehensive strategies [12, 13] exist for op-
timized DG simulations on GPUs, we have adopted a sim-
ple approach based on MATLAB’s gpuArray. Our sim-
ulations have been performed on an NVIDIA GTX Titan

with the following parameters: a = 60 mm, b = 20 mm,
L = 200mm, ρ = 1 m, and k = 8 mm−1. We have used K
elements with Np = (N+1)(N+2)/2 nodes per element,
and the internal penalty parameter τ mentioned earlier. We
consider results for both (i) impedance calculations and (ii)
performance and accuracy.

The initial condition is shown in Fig. 2 and is indepen-
dent of k. Figure 3 shows an example of the real and imag-
inary parts of Er

x, for k = 8 mm−1, at s = 200 mm, i.e. at
the end of the bend.

Figure 2: Initial condition for Er
x.

Figure 3: Real (top) and Imaginary (bottom) parts of Er
x

for ρ = 1 m, L = 200 mm, a = 30 mm, b = 10 mm,
k = 8 mm−1.

We have performed a high resolution simulation with
(N,K) = (8, 2400), and taken the resulting numerical so-

Proceedings of FEL2013, New York, NY, USA MOPSO06

Beam Physics for FEL

ISBN 978-3-95450-126-7

35 C
op

yr
ig

ht
c ○

20
13

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



lution as the “exact” solution. This simulation took about
one hour. Errors for lower-resolution solutions have been
computed against this “exact” solution, with the results for
Er

x at s = 200 mm and k = 8 mm−1 shown in Table 1.

Table 1: DG Er
x Error and Computation Time

N\K 150 600 1350 2400

8.107e-1 3.915e-1 7.471e-2 2.453e-2
8.032e-1 2.528e-1 4.291e-2 1.484e-22

9s 28s 49s 81s
122 486 1093 1943

1.265e-1 4.897e-3 9.344e-4 3.590e-4
8.017e-2 3.427e-3 9.462e-4 4.342e-44

29s 88s 202s 392s
539 2156 4850 8622

1.122e-2 5.177e-4 1.407e-4 5.483e-5
6.974e-3 6.187e-4 1.932e-4 8.045e-56

83s 283s 677s 1319s
1691 6764 15218 27054

1.569e-3 1.672e-4 5.612e-5 N\A*
1.493e-3 2.098e-4 7.473e-5 N\A*8

208s 723s 1867s 3630s
4174 16693 37559 66771

*:Used for comparison to other tests.

The table shows relative L∞ (top) and relative L2 (upper
middle) errors corresponding to Er

x evaluated on a 31× 11
grid. This evaluation grid was the largest set of nodes com-
mon to all DG grids. Computation times (lower middle)
and time-step counts (bottom) are also listed.

The large errors for (N,K) = (2, 150), (2, 600), and
(4, 150) are likely due to the oscillating fields not being
spatially resolved. We are checking this. The errors de-
crease and the time-step counts increase with increasing K
and N . The table shows that the stepsize Δs ∝ 1/(KN2)
as expected from (25).

Our MATLAB DG code was first written for a CPU; the
GPU version required little additional work. Our GPU cal-
culations become more efficient for larger matrix systems,
and when less communication between the CPU and GPU
is required. For the lower-order tests, the GPU functioned
at around 20% of its maximum capacity. However, for
the higher-order tests, the GPU efficiency increased to over
60%. In our GPU simulations we have observed speed-ups
of up to ∼ 10 over our CPU simulations.

FD Results and Impedance Comparison
We have also written a MATLAB finite difference (FD)

code modeled after the FD method discussed in [3, 5–7].
This FD method uses leap-frog as the time-stepper. Our
DG code allows for any spatial order N , whereas the FD
code employs a second-order stencil. For future work, a
comparison between a high-order FD method and the cur-
rent DG approach might be of interest, since the time-
step restriction would be less severe for the high-order FD

method.
The FD grids were of size (N res

x + 1)× (N res
y + 1). As

a test of the two codes, we calculated the impedance from
(7) and (26)-(29). For both the FD and DG approaches,
Fig. 4 depicts the resulting real and imaginary parts. To

1 2 3 4 5 6 7 8 9 100

50

100

150

200

250

300

350

k (mm−1)

R
e 

Z 
(o

hm
s)

1 2 3 4 5 6 7 8 9 10−40

−20

0

20

40

60

k (mm−1)

Im
 Z

 (o
hm

s)

Figure 4: Real (top) and imaginary (bottom) parts of the
longitudinal impedance for ρ = 1 m, L = 200 mm, a =
30 mm, b = 10 mm. DG (blue solid), FD (red dashed)

the eye these impedances are in agreement with Fig. 3 of
[5]. The discrepancy between our DG and FD results is
being investigated. The difference likely stems from how
the spatial derivatives in (6) are computed. The FD method
uses lower order difference stencils instead of collocation
derivative matrices.

We have run the FD code for (N res
x , N res

y ) =
(60, 20), (120, 40), (180, 60), (240, 80), and the results are
shown in Table 2. The errors were calculated with respect
to the high resolution DG calculation, using the 61 × 21
grid which is common to all the cases. The organization of
the table is as in Table 1, with listings for the relative L∞

and L2 error, run time, and time-step count. Clearly, our
DG GPU code outperforms our FD CPU code.

Table 2: FD Er
x Error

Grid 61× 21 121× 41 181× 61 241× 81

3.845e-1 1.126e-1 4.016e-2 3.440e-2
4.539e-1 1.223e-1 4.551e-2 2.840e-2

8s 125s 642s 2032s
200 800 1800 3200

MOPSO06 Proceedings of FEL2013, New York, NY, USA

ISBN 978-3-95450-126-7

36C
op

yr
ig

ht
c ○

20
13

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Beam Physics for FEL



SUMMARY AND FUTURE WORK
We have developed a DG algorithm and GPU code for a

CSR study using the paraxial approximation. As the DG
method may be new to many readers we have given an
overview of the method. Our DG GPU code was written
in MATLAB (as was the described FD code) by one of
us (DB), and it can be made available to interested read-
ers subject to the copyright conditions in [8]. We have
done an error analysis on both codes by comparing results
with a high resolution DG calculation. Our results for the
impedance compare well with Fig. 3 in [5].

We consider this work as a first step step toward our more
ambitious goal of implementing a DG approach to Vlasov-
Maxwell systems, e.g. as a possible alternative to our work
in [1, 2].

Our future plans are as follows.

1. Examine more fully all sources of numerical error in
our simulations. In addition, find optimal (N,K) for
a given error requirement. Experience suggests that
high order works best.

2. Extend the results to arbitrary arcs and straights, e.g.
a 4 dipole chicane.

3. Design a high-order FD code, and compare it with
our DG code. The FD approach would seem better
suited to the simple geometry of the vacuum chamber
considered here. However, the DG approach can han-
dle more complicated geometries, and therefore might
prove particularly useful in studies of tapered or cor-
rugated vacuum chambers.

4. Perform a singular perturbation analysis. Since the
coefficient 2k2a3/ρ in (12) is large, such an analysis
might offer insights into the paraxial solutions. For
example, there does appear to be a boundary layer ef-
fect in Fig. 3 which might be amenable to such an
analysis.

5. Use a DG algorithm for the 3D Maxwell equations to
explore the validity of the paraxial approximation in
the context of the work reported here.

6. Finally, as a long-term goal, develop a DG approach to
the Vlasov-Maxwell equations and compare with our
work in [1, 2].

ACKNOWLEDGMENTS
Our MATLAB DG code was built upon the generic

2D DG codes written by Hesthaven and Warburton (see
nudg.org). We thank T. Agoh and D. Zhou for sharing
their work, D. Brewer for help with our GPU system, and
D. Appelo for comments and suggestions. This work was
supported by DOE under DE-FG-99ER41104. DB’s work
with the DG method in general has also been partially sup-
ported by NSF grant No. PHY 0855678.

REFERENCES
[1] G. Bassi, J. A. Ellison, K. Heinemann, R. Warnock, “Mi-

crobunching Instability in a Chicane: Two-Dimensional
Mean Field Treatment”, Phys. Rev. ST Accel. Beams 12,
080704 (2009).

[2] K. Heinemann, D. Bizzozero, J. A. Ellison, S. R. Lau,
G. Bassi, “Rapid integration over history in self-
consistent 2D CSR modeling”, Proceedings of ICAP2012,
Rostock-Warnemunde, Germany, August 2012. See
jacow.org for the paper and slides at TUSDC2, i.e.,
http://accelconf.web.cern.ch/AccelConf/

ICAP2012/papers/tusdc2.pdf

[3] T. Agoh and K. Yokoya, “Calculation of coherent syn-
chrotron radiation using mesh”, Phys. Rev. ST Accel.
Beams 7, 054403 (2004).

[4] G.V. Stupakov and I.A. Kotelnikov, “Calculation of coher-
ent synchrotron radiation impedance using the mode ex-
pansion method”, Phys. Rev. ST Accel. Beams 12, 104401
(2009).

[5] D. Zhou, K. Ohmi, K. Oide, L. Zang, and G. Stu-
pakov, “Calculation of Coherent Synchrotron Radiation
Impedance for a Beam Moving in a Curved Trajectory”,
Jpn. J. Appl. Phys. 51, 016401 (2012).

[6] T. Agoh, Dynamics of Coherent Synchrotron Radiation by
Paraxial Approximation, Ph.D. Dissertation, University of
Tokyo, December (2004).

[7] D. Zhou, Coherent Synchrotron Radiation and Microwave
Instability in Electron Storage Rings, Ph.D. Dissertation,
The Graduate University for Advanced Studies, September
(2011).

[8] J. Hesthaven and T. Warburton, Nodal Discontinuous
Galerkin Methods (New York: Springer, 2008).

[9] B. Cockburn, “Discontinuous Galerkin Methods”, ZAMM,
Journal of Applied Mathematics and Mechanics, Volume
83, Issue 11, p. 731-754, November (2003)

[10] B. Rivière, Discontinuous Galerkin Methods for Solving El-
liptic and Parabolc Equations (Philadelphia: SIAM, 2008).

[11] C. Johnson, Numerical Solution of Partial Differential
Equations by the Finite Element Method (Mineola N.Y.:
Dover, 2009).

[12] A. Klöckner, T. Warburton, J. Bridge, J. S. Hesthaven,
“Nodal discontinuous Galerkin methods on graphics proces-
sors”, J. Comput. Phys. 228, issue 21, 7863-7882 (2009).

[13] A. Klöckner, T. Warburton, J. S. Hesthaven, “High-Order
Discontinuous Galerkin Methods by GPU Metaprogram-
ming” in GPU Solutions to Multi-scale Problems in Science
and Engineering, edited by D. A. Yuen, L. Wang, X. Chi,
L. Johnsson, W. Ge, and Y. Shi (Springer, 2013). Also avail-
able as arXiv:1211.0582 [cs.MS].

Proceedings of FEL2013, New York, NY, USA MOPSO06

Beam Physics for FEL

ISBN 978-3-95450-126-7

37 C
op

yr
ig

ht
c ○

20
13

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s


