Paper | Title | Page |
---|---|---|
TUOCNO05 | Design Concepts for a Next Generation Light Source at LBNL | 193 |
|
||
Funding: Work supported by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 The NGLS collaboration is developing design concepts for a multi-beamline soft x-ray FEL array powered by a superconducting linear accelerator, operating with a high bunch repetition rate of approximately 1 MHz. The CW superconducting linear accelerator design is based on developments of TESLA and ILC technology, and is supplied by an injector based on a high-brightness, high-repetition-rate photocathode electron gun. Electron bunches from the linac are distributed by RF deflecting cavities to the array of independently configurable FEL beamlines with nominal bunch rates of ~100 kHz in each FEL, with uniform pulse spacing, and some FELs capable of operating at the full linac bunch rate. Individual FELs may be configured for different modes of operation, including self-seeded and external-laser-seeded, and each may produce high peak and average brightness x-rays with a flexible pulse format, and with pulse durations ranging from femtoseconds and shorter, to hundreds of femtoseconds. In this paper we describe current design concepts, and progress in R&D activities. |
||
![]() |
Slides TUOCNO05 [5.982 MB] | |
TUPSO83 | Quantum Efficiency and Transverse Momentum From Metals | 424 |
|
||
Funding: Work supported by US DOE contracts DE-AC02-05CH11231, KC0407-ALSJNT-I0013, and DE-SC000571. QE and transverse momentum are key parameters limiting the achievable brightness of FELs. Despite the importance, little data is available to substantiate current models. Expressions for each and experimental confirmation of each expression with respect to excess energy are presented. Novel instrumentation and analysis techniques developed are described. |
||