Paper | Title | Page |
---|---|---|
MOPSO66 | Start-to-end Simulation of a Next Generation Light Source Using the Real Number of Electrons | 112 |
|
||
Funding: This research was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Start-to-end simulation plays an important role in design and optimization of next generation light sources. In this paper, we will present start-to-end (from the photocathode to the end of undulator) simulations of a high repetition rate FEL-based Next Generation Light Source driven by CW superconducting linac with the real number of electrons (~2 billion electrons/bunch) using the multi-physics parallel beam dynamics code IMPACT. We will discuss challenges, numerical methods and physical models used in the simulation. We will also present simulation results of a beam transporting through photoinjector, beam delivery system, and final X-ray FEL radiation. |
||
TUOCNO05 | Design Concepts for a Next Generation Light Source at LBNL | 193 |
|
||
Funding: Work supported by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 The NGLS collaboration is developing design concepts for a multi-beamline soft x-ray FEL array powered by a superconducting linear accelerator, operating with a high bunch repetition rate of approximately 1 MHz. The CW superconducting linear accelerator design is based on developments of TESLA and ILC technology, and is supplied by an injector based on a high-brightness, high-repetition-rate photocathode electron gun. Electron bunches from the linac are distributed by RF deflecting cavities to the array of independently configurable FEL beamlines with nominal bunch rates of ~100 kHz in each FEL, with uniform pulse spacing, and some FELs capable of operating at the full linac bunch rate. Individual FELs may be configured for different modes of operation, including self-seeded and external-laser-seeded, and each may produce high peak and average brightness x-rays with a flexible pulse format, and with pulse durations ranging from femtoseconds and shorter, to hundreds of femtoseconds. In this paper we describe current design concepts, and progress in R&D activities. |
||
![]() |
Slides TUOCNO05 [5.982 MB] | |
WEPSO48 | Simulation Studies of FELs for a Next Generation Light Source | 609 |
|
||
Funding: This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Several possible FEL beamlines for a Next Generation Light Source are studied. These beamlines collectively cover a wide range of photon energies and pulse lengths. Microbunching and transverse offsets within the electron beam, generated through the linac, have the potential to significantly impact the longitudinal and transverse coherence of the x-ray pulses. We evaluate these effects and set tolerances on beam properties required to obtain the desired properties of the x-ray pulses. |
||
WEPSO73 | High Average Power Seed Laser Design for High Reprate FELs | 697 |
|
||
Funding: US Department of Energy, under Contract Numbers DE-AC02-0SCH11231. In the proposed Next Generation Light Source (NGLS), FEL designs use lasers to seed the FEL in an HGHG scheme or bunch the electron beam in an E-SASE scheme. The FELs would run at 100kHz to 1MHz, requiring high average power lasers. For the seeded FEL, laser modulation is applied at 200-240nm, with 250-700MW peak power depending on pulse length, which can vary from 100-10fs. The laser consists of a broadband oscillator and amplitude/phase shaper seeding an optical parametric amplifier (OPA). After recompression, the ~800nm pulse is converted to the fourth harmonic. Losses could be high enough to require 250W at 100kHz, making the OPA ~100x more powerful than existing femtosecond OPAs. In the E-SASE scheme, a single cycle of 5 micron light bunches the beam, which then radiates a short X-ray burst. This requires 100% fractional bandwidth, and precise phase control of the e-field within the pulse, as well as broad band compensation of dispersion throughout the laser path. Bandwidth can be increased by splitting the amplified spectrum into segments and coherently recombining. We present design concepts that are expected to meet requirements, and identify R&D needs. |
||
THOBNO01 | Three Unique FEL Designs for the Next Generation Light Source | 734 |
|
||
The NGLS is a next generation light source initiative spearheaded by the Lawrence Berkeley National Laboratory and based on an array of free-electron lasers (FEL) driven by a CW, 1-MHz bunch rate, superconducting linear accelerator. The facility is being designed to produce high peak and high average brightness coherent soft x-rays in the wavelength range of 1-12 nm, with shorter wavelengths accessible in harmonics or in expansion FELs. The facility performance requirements are based on a wide spectrum of scientific research objectives, requiring high flux, narrow-to-wide bandwidth, broad wavelength tunability, femtosecond pulse durations, and two-color pulses with variable relative timing and polarization, all of which cannot be encompassed in one FEL design. In addition, the cost of the facility requires building in a phased approach with perhaps three initial FELs and up to 9-10 FELs in the long term. We describe three very unique and complimentary FEL designs here as candidates for the first NGLS configuration. | ||
![]() |
Slides THOBNO01 [1.331 MB] | |