Paper | Title | Page |
---|---|---|
MOOBNO01 | First Lasing of FERMI FEL-2 | 1 |
|
||
During the month of October 2012 the commissioning of the light source FEL-2 at FERMI was successfully concluded. Fermi FEL-2 is the first seeded FEL operating with a double stage cascade in the "fresh bunch injection" mode*. The two stages are two high gain harmonic generation FELs where the first stage is seeded by the 3rd harmonic of a Ti:Sa laser system, which is up converted to the 4th-6th harmonic. The output of the first stage is then used to seed the second stage. A final wavelengths of 10.8 nm was obtained as the 24th harmonic of the seed wavelength at the end of the two frequency conversion processes, demonstrating that the FEL is capable of producing single mode narrow bandwidth pulses with an energy of several tens of microjoules.
*I. Ben-Zvi, K. M. Yang, L. H. Yu, ”The ”fresh-bunch” technique in FELs”, NIM A 318 (1992), p 726-729 |
||
![]() |
Slides MOOBNO01 [25.265 MB] | |
THIANO01 | Double Stage Seeded FEL with Fresh Bunch Injection Technique at FERMI | 723 |
|
||
Seeding a FEL with an external coherent source has been extensively studied in the last decades as it can provide a way to enhance the radiation brightness and stability, with respect to that available from SASE. An efficient scheme for seed a VUV-soft x ray FEL uses, a powerful, long wavelength external laser to induce on the electron beam coherent bunching at the harmonics of the laser wavelength. When the bunching is further amplified by FEL interaction in the radiator, the scheme is called high gain harmonic generation (HGHG). The need of high power seed sources and of small energy spread are at the main limits for a direct extension of the HGHG scheme to short wavelengths. The fresh bunch scheme was proposed as a way to overcome these limitations; the scheme foresees the FEL radiation produced by one HGHG stage as an external seed in a second HGHG stage. We report the latest results obtained at FERMI that uses the two-stage HGHG scheme for generation of FEL pulses in the soft x-ray. A characterization of the FEL performance in terms of power, bandwidth and stability is reported. Starting from the FERMI results we will discuss extension of the scheme toward shorter wavelengths. | ||
![]() |
Slides THIANO01 [9.355 MB] | |
THOCNO04 | Jitter-free Time Resolved Resonant CDI Experiments Using Two-color FEL Pulses Generated by the Same Electron Bunch | 753 |
|
||
The generation of two-color FEL pulses by the same electron bunch at FERMI-FEL has opened unprecedented opportunity for jitter-free FEL pump-FEL probe time resolved coherent diffraction imaging (CDI) experiments in order to access spatial aspects in dynamic processes. This possibility was first explored in proof-of-principle resonant CDI experiments using specially designed sample consisting of Ti grating. The measurements performed tuning the energies of the FEL pulses to the Ti M-absorption edge clearly demonstrated the time dependence of Ti optical constants while varying the FEL-pump intensity and probe time delay. The next planned CDI experiments in 2013 will explore transient states in multicomponent nanostructures and magnetic systems, using the controlled linear or circular polarization of the two-color FEL pulses with temporal resolution in the fs to ps range. | ||
![]() |
Slides THOCNO04 [8.778 MB] | |