OPTICAL DIFFRACTION RADIATION INTERFERENCE AS A NON-INTERCEPTING EMITTANCE MEASUREMENT FOR HIGH BRIGHTNESS AND HIGH REPETITION RATE ELECTRON BEAM

A. Cianchi University of Rome "Tor Vergata" & INFN

On behalf of ODRI collaboration

34th International Free Electron Laser Conference

ODRI Collaboration

- Roma Tor Vergata
 - A. Cianchi, L. Catani

- LNF

M. Castellano, E. Chiadroni, M. Migliorati

- Desy Hamburg
 - K. Honkavaara, G. Kube,
 N. Golubeva, V. Balandin

- High Brightness / High repetition rate beams deposit unsustainable amount of energy in intercepting device
- Our goal is the development of a new nonintercepting (and hopefully non-disturbing) diagnostic in order to measure the emittance in a parasitic way

Diffraction Radiation

- The charge goes into the hole without touching the screen
- The electromagnetic field of the moving charge interacts with the metallic screen
- No power is deposited on the screen
- The angular distribution of the emerging radiation is affected by the beam transverse size, the angular spread and <u>the position inside the slit</u>
 - M. Castellano 1997 Nucl. Instrum. Methods Phys. Res., Sect. A 394, 275.
- Rectangular slit

νλ $I \propto e$

First experiment @ KEK

P. Karataev et al., "Beam-Size Measurement with Optical Diffraction Radiation at KEK Accelerator Test Facility", Phys. Rev. Lett. <u>93</u>, 244802 (2004)

- Weak signal vs strong background, coming mainly from Synchrotron Radiation
- Precise control of the beam position inside the slit needs a complementary diagnostics

Introducing ODRI

2012 NARA

Optical Diffraction Radiation Interference

Collinear slits

Point like beams with different angular spreads

Possible confusion between the contribution of the angular spread and the beam dimension

Non collinear slits

The 50 µm offset between the slits is enough to avoid mixing between the contributions of angular spread and beam size

Angular distribution

- We moved together the two slits with respect to the beam position.
- The slit misalignment resolves in an asymmetric distribution from top to bottom, solving the problem of the complementary diagnostic

Longitudinal wake

K_{LII} =13.5 V/pC → (200 pC) → 2.7 keV

 $\sigma_{\epsilon} = 7.8 \text{ V/pC} \rightarrow (200 \text{ pC}) \rightarrow 1.6 \text{ keV} \rightarrow (1 \text{ GeV}) \rightarrow 1.6 \text{e-}6$

M. Migliorati

Transverse horizontal wake

 $y'_c=1.8 \text{ V/pC} \rightarrow (200 \text{ pC}) \rightarrow 0.36 \text{ keV} \rightarrow 3.6\text{e-7 rad}$

 $\sigma_{v'} = 0.68 \text{ V/pC} \rightarrow (200 \text{ pC}) \rightarrow 0.14 \text{ keV} \rightarrow 1.4\text{e-7 rad}$

M. Migliorati

Transverse vertical wake

linear with the vertical misalignment of the first perpendicular slit (small displacements)

 $y'_c=0.63 \text{ V/pC} \rightarrow (200 \text{ pC}) \rightarrow 0.13 \text{ keV} \rightarrow 1.3\text{e-7 rad}$

 $\sigma_{v'} = 0.25 \text{ V/pC} \rightarrow (200 \text{ pC}) \rightarrow 0.05 \text{ keV} \rightarrow 5\text{e-8 rad}$

M. Migliorati

Experimental Setup

1 mm movable slit

Calibration frame

Optical System

Experiment @ FLASH

FLASH is an excellent linac for this experiment:

- High energy up to 1 GeV
- Large number of bunches (up to 30) with high charge (up to 1 nC)
- Long collaboration history & big support

Two different spots

2012 NARA

A. Cianchi et al. Physical Review Special Topics – Accelerators and Beams 14,102803 (2011)

Different wavelength

Horizontal polarization

Quadrupole Scan

2012 N A R A

Emittance II

We have a dream...

$$\sigma_{i,11} = C_i^2 \sigma_{11} + 2S_i C_i \sigma_{12} + S_i^2 \sigma_{22}$$

$$\sigma_{i,22} = C_i'^2 \sigma_{11} + 2C_i' S_i' \sigma_{12} + S_i'^2 \sigma_{22}$$

- There are 3 unknown quantities but 2 equations!
- σ_{i.11} is the squared rms beam size
- $\sigma_{i,22}$ is the squared rms divergence
- C_i and S_i are the element of the transport matrix
- We need just 2 measurements in 2 different position to evaluate the emittance in a totally non-intercepting an non-disturbing way

2012 NARA

Conclusions

- ODRI is an improvement with respect to ODR. Main advantages are
 - Suppression of SR background
 - Slits displacement to avoid complementary diagnostic and to discriminate between σ and σ'
- ODRI could be a candidate to be a parasitic diagnostic for high brightness / high repetition rate beams.
- We realized the first non-intercepting emittance measurement.
- The capability to measure both σ and σ' paves the way to 2 screens non-intercepting emittance measurement
- The work is in progress...

Thank you

11000

