X-ray Based Undulator Commissioning in SACLA

Takashi Tanaka, for the SACLA Commissioning Team RIKEN SPring-8 Center, XFEL R&D Division

Contents

- Introduction
- Commissioning Details
 - Procedures
 - Results
- Achieved Accuracy
- Summary

Contents

Introduction

- Commissioning Details
 - Procedures
 - Results
- Achieved Accuracy
- Summary

Undulator Commissioning in XFELs

- In XFELs, a long undulator composed of many segments is usually installed.
- To achieve lasing, all segments should work "coherently" and behave as a single undulator.
- What to align or tune?
 - Steering magnet (trajectory straightness)
 - Undulator gap and height (K value)
 - Phase shifter gap (phase matching)
 - Undulator taper (wake field compensation)

Error Sources & Tolerances

Commissioning Target		Tolerance	Tuning Method		
			Rad. Type	Item	
Trajectory	BPM	2.2 μm	-	-	
	Injection Angle	0.5 μrad	Mono. SR	Angular Profile	
K Value	Gap	1.9 μm	Mono. SR	Spectrum	
	Height	60 μm			
	Total	5x10 ⁻⁴	-	-	
Phase Matching (Phase Slippage)		30 °	SASE	Intensity	
			Mono. SR	Spectrum	
Undulator Taper (Wake Compensation)		1.6x10 ⁻⁴ /segment	SASE	Intensity	

"X-ray" Based Commissioning

- Alignment or tuning of devices related undulator operation by characterization of radiation
- Spontaneous
 - Available at any time & under any conditions
 - Should be monochromatized
- SASE
 - Lasing condition should be satisfied
 - Enhancement of SASE intensity is the top priority

Photon Diagnostics System at SACLA

Contents

- Introduction
- Commissioning Details – Procedures
 - Results
- Achieved Accuracy
- Summary

Commissioning Target		Tolerance	Tuning Method	
			Rad. Type	ltem
Trajectory	BPM	2.2 μm	-	-
	Injection Angle	0.5 μrad	Mono. SR	Angular Profile
K Value	Gap	1.9 μm	Mono. SR	Spectrum
	Height	60 µm		
	Total	5x10 ⁻⁴	-	-
Phase Matching (Phase Slippage)		30°	SASE	Intensity
			Mono. SR	Spectrum
Undulator Taper (Wake Compensation)		1.6x10 ⁻⁴ /segment	SASE	Intensity

Estimation of Injection Angle

Mono. SR Beam Pointing Stability

Commissioning Target		Tolerance	Tuning Method		
			Rad. Type	ltem	
Trajectory	BPM	2.2 μm	-	-	
	Injection Angle	0.5 µrad	Mono. SR	Angular Profile	
K Value	Gap	1.9 μm	Mono. SR	Spectrum	
	Height	60 μm			
	Total	5x10 ⁻⁴	-	-	
Phase Matching (Phase Slippage)		30°	SASE	Intensity	
			Mono. SR	Spectrum	
Undulator Taper (Wake Compensation)		1.6x10 ⁻⁴ /segment	SASE	Intensity	

Undulator K-value Tuning

 The undulator K value depends on the magnet gap and vertical position

$$K(g, y) = K_0 e^{-\pi g/\lambda_u} \cosh(2\pi y/\lambda_u)$$

Both the undulator gap and height should be aligned for precise K value tuning!

K-value Determination by Spectrum

- UR is quasi-monochromatic at the fundamental energy of ω_{1st} $\omega_{1st} = \frac{4\pi c \gamma^2}{\lambda_n (1 + K^2/2 + \gamma^2 \theta^2)}$
- For better resolution, the angular acceptance $(\Delta \theta)$ should be small to reduce the spectral bandwidth.
- From the practical point of view, it is better to apply Δθ larger than the UR angular spread.

Condition of Spectrum Measurement

UR spectrum depends on many parameters

Example of UR Spectra

Gap Tuning

Example of Tuning

Fitting Function for the Optimum Gap

Height Alignment

Example of Alignment

Commissioning Target		Tolerance	Tuning Method	
			Rad. Type	ltem
Trajectory	BPM	2.2 μm	-	-
	Injection Angle	0.5 µrad	Mono. SR	Angular Profile
K Value	Gap	1.9 μm	Mono. SR	Spectrum
	Height	60 μm		
	Total	5x10 ⁻⁴	-	-
Phase Matching (Phase Slippage)		30 °	SASE	Intensity
			Mono. SR	Spectrum
Undulator Taper (Wake Compensation)		1.6x10 ⁻⁴ /segment	SASE	Intensity

Phase Shifter

Phase Shifter

- How to satisfy the matching condition?
 - SASE: optimize the laser intensity
 - Spontaneous: ??

SASE Intensity vs. Phase

SR Spectrum vs. Phase

Example of Phase Matching

Commissioning Target		Tolerance	Tuning Method	
			Rad. Type	ltem
Trajectory	BPM	2.2 μm	-	-
	Injection Angle	0.5 µrad	Mono. SR	Angular Profile
K Value	Gap	1.9 μm	Mono. SR	Spectrum
	Height	60 µm		
	Total	5x10 ⁻⁴	-	-
Phase Matching (Phase Slippage)		30 °	SASE	Intensity
			Mono. SR	Spectrum
Undulator Taper (Wake Compensation)		1.6x10 ⁻⁴ /segment	SASE	Intensity

Undulator Taper

- The wakefield induced in the undulator results in an energy loss, which can be compensated by undulator tapering.
- The optimum taper is easily determined to maximize the FEL gain.
- Even so, it is important to roughly estimate the optimum taper before trying to achieve lasing, especially in SACLA.

Wake Estimation by UR Spectrum

- The gap of the last undulator is set differently on purpose.
- Spectrum of SR emitted from the last undulator is measured for different wakefield conditions.

Example of Wake Estimation

Example of Wake Estimation

Taper Optimization by SASE Intensity

Contents

- Introduction
- Commissioning Details
 - Procedures
 - Results
- Achieved Accuracy
- Summary

Evaluation of Alignment Accuracy

- How is the alignment accuracy achieved in our scheme?
 - Trajectory alignment: pointing stability
 - Others: reliability of fitting functions

Simulate the fluctuation of fitting parameters based on the statistics of the actual measurement

Example: K-value Tuning

Example: K-value Tuning

Achieved Accuracy

Commissioning Target		Accuracy		
		Required	Achieved	
Trajectory		2.2 μm = 0.5 μrad	0.22 μrad (x) 0.48 μrad (y)	
K Value	Total	5x10 ⁻⁴	2x10 -4	
	Gap	1.9 μm	0.6 μm	
	Height	60 μm	10 μm	
Phase		30 °	15° (SR) 120° (SASE)*	
Taper (∆K/segment)		1.6x10 ⁻⁴	4x10 ⁻⁵	

* @exponential growth region

Achieved Accuracy

Commissioning Target		Accuracy		
		Required	Achieved	
Trajectory		2.2 μm	0.22 μrad (x)	
κ Increasing the averaging number of shots improves the accuracy!!				
		Height	60 μm	10 µm
Phase		30 °	15° (SR) 120° (SASE)*	
Taper (∆K/segment)		1.6x10 ⁻⁴	4x10 -5	

* @exponential growth region

Improvement by 10 Shot Averaging

Summary

- Undulator commissioning by means of x-ray characterization has been successfully carried out in SACLA, which is now routinely in operation to offer the best performance to users.
- Among all the alignment items, the trajectory correction is done most frequently, e.g., every two or three weeks.

Thank you for your attention!

Alignment Tolerance

How to specify the alignment tolerance of respective components?

- 1) Create a number of error models with the target component being aligned with some tolerance (others perfect)
- 2) Perform simulations to calculate the gain reduction due to misalignment
- 3) Repeat the above processes for different alignment accuracies
- 4) Define the tolerance so that 90% of the ideal SASE intensity is obtained

Angular Profile of Mono. SR

After monochromatization, the angular spread of SR is given by

Example of Correction

Example: Trajectory Alignment

- Trajectory error at the i-th segment is described in two forms:
 - BPM alignment error X_i,Y_i
 - Injection angle error Θ_{xi}, Θ_{yi}
- Both errors follow the Gauss random number

$$\Sigma_{\Theta X} = rac{\sqrt{2} \Sigma_X}{L}$$
 , $\Sigma_{\Theta Y} = rac{\sqrt{2} \Sigma_Y}{L}$

Tolerance: Trajectory Alignment

Example: K-value Tuning

