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In order to achieve the demanded rf phase stability, we 
designed and constructed a high-precision and high-
stability rf system for the SACLA accelerator [3]. For 
example, a high-voltage charger for the high-voltage 
pulse modulator of a klystron has a voltage stability of 1 × 10ିହ rms [4]. For a low-level rf (LLRF) system, the 
rf phase can be measured within 0.3 degree pk-pk 
precision for a C-band accelerator, corresponding to 
150 fs pk-pk [5]. Furthermore, the temperatures of 
acceleration structures [6] and LLRF electronics are 
regulated within 0.08 K pk-pk and 0.2 K pk-pk, 
respectively. Even though each component was designed 
to be sufficiently stable, the XFEL intensity degradation, 
as shown in Fig. 1, was still remained. Therefore, we 
studied the cause of the XFEL intensity fluctuation and 
improved the stability of the accelerator. 

STRATEGY OF STABILIZATION 
In order to achieve the required peak current, the bunch 

compression ratio of each bunch compression stage 
should be sufficiently stable. Otherwise, a variation of the 
bunch compression ratio at an upstream part would affect 
the downstream part and the peak current fluctuation 
would be accumulated. Therefore, the rf phase of every 
acceleration cavity in the bunch compression part should 
be sufficiently regulated. 

One may consider the feedback control of the rf phase 
will improve the performance by using a beam energy 
monitor and a bunch length monitor in a bunch 
compressor. However, for the upstream part of BC1, there 
are five acceleration cavities with different rf frequencies 
and each of them has two degrees of freedom (rf phase 
and intensity). In this case, ten parameters, which have a 
complicated correlation, should be determined by a 
feedback control. Nevertheless, we do not have enough 
beam monitors due to technological issues, limited 
detector space and cost problems. 

Consequently, we decided to improve the stability of 
the accelerator cavities upstream of BC1, as the first 
priority. In particular, the temperature drift of the 
accelerator cavity was reduced and the temperature 
coefficient of the LLRF system was improved. 

STABILITY IMPROVEMENTS 
At first, the frequency analysis was performed for the 

XFEL intensity variation to find causes of the instability. 
The result of the analysis is plotted in Fig. 3. From this 
figure, a sharp peak at 0.5 Hz was found and this could be 
a cause of short-term instability. For a long-term drift, the 
spectrum gradually increases as the frequency decreases. 
In the subsequent sub-sections, we consider the cause of 
the variation and describe the improvement of each 
fluctuation component. 

Short-term Stability 
The short-term jitter of 0.5 Hz was found to be 

correlated with a beam position jitter at BC1. The beam 
position at BC1 had almost the same spectrum as Fig. 3, 

which showed a peak at 0.5 Hz. This position data also 
indicated a correlation with the XFEL intensity, as plotted 
in Fig. 4. The fluctuation of the beam position was 
thought to be caused by a 0.5 Hz variation of the rf phase 
of an accelerator cavity upstream of BC1. The beam 
position fluctuation gives rise to an orbit distortion in the 
undulator section and the FEL interaction between the 
electron beam and its radiated x-rays is reduced. 
Furthermore, such an rf phase fluctuation also causes 
peak current degradation. The XFEL intensity instability 
was thought to be induced from these reasons. 

This 0.5 Hz modulation was synchronized with the 
pulse-width modulation (PWM) of an AC heater for a 
precise temperature regulation system (PTRS) [6]. The 
PTRS consists of an about 5 kW heater with about an 
10 l/min flow of cooling water and a PWM heater 
controller. In this case, a cooling water temperature was 
modulated with a 0.5 Hz frequency and the amplitude of 
water temperature swing was about 1 K. This temperature 
modulation affected the acceleration cavity temperature 
and the resonant frequency is slightly shifted periodically. 
This caused the rf phase modulation of the accelerator. 
Moreover, magnetic field leakage from a heater cable 
would slightly kick the beam. In order to remove this 
0.5 Hz fluctuation of the beam, the heater of the PTRS 
should be driven by a DC current without PWM control. 
In this summer, we replace the PWM AC heater of the 
PTRS with a continuous DC heater [7]. 

Figure 4: Scatter plot of the XFEL intensity (vertical 
axis) vs. the beam position downstream of BC1 
(horizontal axis). 

Figure 3: Spectrum of the XFEL intensity fluctuation. 
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Long-term Stability of Accelerator Cavity 
Temperature 

As described in the introduction, the accelerator cavity 
temperature was regulated within 0.08 K pk-pk by using 
the PTRS. However, an rf phase shift that came from the 
cavity temperature drift was observed. We found that this 
temperature drift was caused by an internal drift of the 
thermometer module of the PTRS. In order to test the 
stability of the thermometer module, a precise resister 
with a low temperature coefficient of 1 ppm was 
connected instead of a Pt 100 temperature detector and 
the output of the temperature module should be constant. 
The trend graph of the result is shown in Fig. 5. Even 
though the variation of the temperature module output 
was within 0.08 K, there was a cyclic modulation with a 
period of a few hours. This fake signal would make the 
variation of the cavity temperature. Thus, this 
thermometer module was not sufficient for the long-term 
stability of the XFEL intensity and a more precise 
thermometer module was required. 

As a more precise thermometer module, we tested 
REX-F9000 developed by RKC Instrument Inc. [7]. This 
module was confirmed to have a 0.001 K resolution and a 
0.004 K pk-pk stability, as shown in Fig. 6. By using this 
module, the temperature stability of the acceleration 
cavity was improved by ten times smaller than the 
previous system, and the rf phase drift was considerably 
reduced. Figure 7 shows the trend graphs of the phase of 
the acceleration rf field in the second L-band APS cavity 
before and after the thermometer module upgrade. L-band 
APS accelerator consists of two APS cavities and the rf 
phase of the first cavity is regulated by a PID feedback 
control of the LLRF system, but the phase of the second 
cavity is not regulated. Therefore, the rf phase before the 
PTRS upgrade had a large drift. After the PTRS upgrade, 
the rf phase stability was significantly improved. 

Long-term Stability of the LLRF System 
Another reason for the XFEL intensity drift was 

thought to be instability of the LLRF system. In SACLA, 
the master rf clock was distributed by an optical 
transmission system. Since the optical fiber is used for the 
signal distribution, fiber length expansion due to a 
temperature variation can be a cause of an rf phase shift. 
In addition, temperature drifts of the LLRF electronics, 
such as electric-to-optical (E/O) and optical-to-electrical 
(O/E) converters, in-phase and quadrature (IQ) modulators 
/ demodulators can also affect the rf phase. Since the 
master rf clock signal is the reference of an acceleration 
field, a drift of the master rf clock is hard to recognize. 

In order to check the stability of the reference signal, 
we monitored the beam arrival timing at each accelerator 
cavity upstream of BC1. The arrival timing was measured 
by using a beam-induced field method [8]. In this 
measurement, the acceleration rf power of the cavity was 
turned off and the beam-induced rf phase was detected. 
This rf phase represents the beam arrival timing with 
respect to the reference rf signal. The trend graph of the 

arrival timing for 2 days is shown in Fig. 8. The drift of 
the rf phase was 1 degree at each cavity, corresponding to 
approximately 10 ps at the 238 MHz cavity, for example. 
This phase drift was confirmed to be synchronized to the 
XFEL intensity degradation. Further investigation showed 
that the 238 MHz cavity phase had a larger correlation to 
the XFEL intensity. 

Figure 6: Trend graph of the new thermometer module, 
F9000, with a precise resistor (red line). Blue line shows 
an ambient temperature of the module.  

Figure 7: Trend graphs of the rf phase of the L-band 
second APS cavity with an old thermometer module 
(upper) and a new module (lower). Cyan lines show 10-
shot average data and blue lines show 1000-shot average.  

Figure 5: Trend graph of the old thermometer module 
connected with a precise resistor. The cyan line shows 
raw data and the blue line shows a moving average. 
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