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Abstract

The broadband, 3D FEL code Puffin is presented. The
analytical model is derived in absence of the Slowly Vary-
ing Envelope Approximation, and can model undulators of
any polarization. Due to the enhanced resolution, the mem-
ory and processing requirements are greater than equivalent
averaged codes. The numerical code to solve the system
of equations is therefore written for a parallel computing
environment utilizing MPI. An example simulation is pre-
sented.

INTRODUCTION

Most analytical and numerical models of the FEL use
the Slowly Varying Envelope Approximation [1] (SVEA)
on the radiation field. This assumes a slow temporal and
spatial evolution of the field envelope at the scale of the
radiation wavelength, and allows an averaging of the field
envelope and some electron phase-space parameters over at
least one radiation period, removing the need to model any
fast oscillatory terms at the radiation frequency. Most of the
commonly used multi-dimensional FEL simulation codes
(e.g. MEDUSSA [2], GINGER [3], GENESIS 1.3 [4] and
FAST [5]), are based on averaged SVEA models. While
these have been used successfully to model basic FEL op-
eration, and have been extensively benchmarked against
experiment, SVEA means that resolution of sub-resonant
wavelength scale processes are not possible. The particles
used to simulate the electrons are confined to localised re-
gions of one radiation period within the electron pulse, so
that transport of particles over many radiation wavelengths,
such as may occur as a result of the FEL interaction or
e.g. a pre-imposed electron energy chirp, cannot be mod-
elled easily. Furthermore, the correct simulation of electron
shot-noise is only valid for a limited radiation wavelength
range [6]. The minimum sampling period of the field en-
velope imposed by SVEA also limits the range of radiation
frequencies able to be modelled without numerical alias-
ing effects to ωr/2 < ω < 3ωr/2, where ωr is the radi-
ation resonant frequency [7]. Thus, using SVEA, it is not
possible to model effects with a broader bandwidth using
the same radiation field envelope. Such issues with SVEA
constrain the effective modelling of several more advanced
FEL methods including designs to achieve shorter radiation
wavelengths and pulse durations [8].

This paper presents what the authors believe to be the
first 3D unaveraged, broadband FEL computer simulation
code, named Puffin (Parallel Unaveraged Fel INtegrator).

The primary aim of this code is to provide a flexible re-
search resource that can be adapted to test new ideas and
methods for future FEL development. It is not intended, at
least initially, as a design tool for FEL facility development.

The radiation field is modelled using the Finite Element
method [9] and the electrons by a distribution of charge
weighted macroparticles that can model the effects of elec-
tron shot-noise across a broad frequency bandwith [6].
Electrons are not confined to localised regions of the beam
so that electron transport throughout the beam is correctly
modelled. The main approximations applied are the neglect
of the backward (counterpropagating) radiation field and
the paraxial approximation. Furthermore, space-charge ef-
fects in the electron beam are neglected.

The resulting parallelised numerical code is able to sim-
ulate both CSE and spontaneous emission arising from
electron shot-noise. The advantages are an enhanced and
broadband resolution of the radiation including a self-
consistent modelling of variable radiation polarisation. The
disadvantages are the increased computer memory require-
ments and processing time when compared to the averaged
numerical models.

In the following, the derivation of the final working
equations and subsequent numerical solution is outlined
and the operation of the code is demonstrated using dif-
ferent FEL configurations.

MATHEMATICAL MODEL
The electromagnetic field is given by:

E =
1√
2

(
êξ0e

i(krz−ωrt) + c.c.
)
, (1)

where the vector basis

ê =
1√
2

(x̂ + iŷ) (2)

and ξ0(x, y, z, t) = |ξ0(x, y, z, t)| exp(iψ(x, y, z, t)) is the
complex field envelope, with kr and ωr, the field wavenum-
ber and angular frequency respectively, of a resonant wave.

It is assumed the field propagates in vacuum and that
the paraxial approximation applies, so that ωr = ckr and
∂/∂z ≈ ∂/c∂t.

The undulator magnetic field is defined as:

Bu =
Bu
2

(
ueikuz + c.c.

)
(3)

where ku = 2π/λu is the undulator wavenumber, λu is the
undulator wavelength and Bu is the peak magnetic field
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of the undulator and the (generally non-unit) vector basis
is u = (uxx̂ + iuyŷ). The undulator polarisation is then
determined by ux and uy , which are the relative peak mag-
netic undulator field in x or y.

The FEL or Pierce parameter determines the strength of
the radiation/electron coupling in the 1-Dimensional limit
and is given by [10] ρ = (āuωp/4cku)2/3/γr. Here, e and
m are the charge magnitude and rest-mass of an electron,
c is the speed of light, ωp =

√
e2np/ε0m is the (non-

relativistic) electron beam plasma frequency, np is the peak
electron number density, āu = eB̄u/mcku is the RMS
undulator parameter and γr is the electron energy in units
of the rest-mass energy corresponding to the resonant FEL
wavelength λr.

Starting from the coupled Maxwell-Lorentz equations,
using the definitions of electromagnetic and undula-
tor fields and above, and defining dimensionless scaled
variables:-

p2j =
1− βzj
ηβzj

, η =
1− β̄z
β̄z

,

p̄⊥ =
u√

2mcāu
p⊥, A⊥ =

euāulg

2
√

2γ2rmc
2ρ
E⊥,

z̄ = 2kuρz, z̄2 = 2kuρ
β̄z(ct− z)
(1− β̄z)

,

x̄, ȳ =
x, y√
lglc

,

where u2 = u · u∗, lc = 1/2ρkr, and lg = 1/2ρku, gives
the final set of working equations as solved numerically by
the code:[

1

2

( ∂2
∂x̄2

+
∂2

∂ȳ2

)
− ∂2

∂z̄∂z̄2

]
A⊥ =

− 1

n̄p

∂

∂z̄2

N∑
j=1

p̄⊥jLjδ
3(x̄j , ȳj , z̄2j)

(4)

dp̄⊥j
dz̄

=
1

2ρ

[
iU∗ − ηp2j

f2k̄2β
A⊥j

]
−

u
√
η

2
√

2fk̄βρLj
×(

k̄2β(x̄j − iȳj) +
η

(1 + ηp2j)

(
dx̄j
dz̄
− idȳj

dz̄

)
dp2j
dz̄

∣∣∣
F

)
(5)

dp2j
dz̄

=
2ρ

u2η
L2
j

[
ηp2j(A

∗
⊥j p̄⊥j + c.c.)

− i(1 + ηp2j)f
2k̄2β(Up̄⊥j − c.c.)

]
+
dp2j
dz̄

∣∣∣
F

(6)

dz̄2j
dz̄

= p2j (7)

dx̄j
dz̄

=
2
√

2fk̄βρ

u
√
η

Lj<(p̄⊥j) (8)

dȳj
dz̄

= −2
√

2fk̄βρ

u
√
η

Lj=(p̄⊥j). (9)

Here, n̄p = lgl
2
cnp is the peak electron number density

at the start of the interaction in the scaling of (x̄, ȳ, z̄2),
U(z̄) = (ux cos(z̄/2ρ) + iuy sin(z̄/2ρ)), and

Lj ≡
γr

βzjγj
= γr

√√√√√ηp2j(2 + ηp2j)

1 + 2
ā2u
u2
|p̄⊥j |2

(10)

The equations (7..9) for the z̄-dependent electron co-
ordinates (x̄j , ȳj , z̄2j) are simply derived from the scaled
momentum-energy relations.

The scaled betatron wavenumber is given by k̄β =
āu/2fργr, where the scaling is with respect to that of ‘nat-
ural’ undulator focusing [11], when f =

√
2. For variable

f the external focusing may be artificially strengthened or
weakened. However, the undulator magnetic field (3) has
no transverse variation and so natural focussing is not in-
cluded in the model. Thus the term:

dp2j
dz̄

∣∣∣
F

= −k̄2β
(1 + ηp2j)

(
x̄j
dx̄j
dz̄

+ ȳj
dȳj
dz̄

)
1 + η

((dx̄j
dz̄

)2
+
(dȳj
dz̄

)2) . (11)

must be added in equations (5,6), to ensure the electron
energy remains constant over betatron period in the absence
of a radiation field.

The field equation (4) is derived by neglecting the back-
wards wave component of the radiation field [12]. In
the 1D Compton limit, ignoring focusing and diffraction
terms, equations (4-7) reduce to those of [6].

In scaled units the Rayleigh range for a Gaussian beam
of width of σxr is z̄R = krσ

2
xr/lg which, in the transverse

scaling above, may be written z̄R = σ̄2
xr/2ρ. By definition,

z̄R = πF where F is the Fresnel number for a gain length.
For the case of a matched beam, so that the emittance ε =
kβσ

2
xb, where σxb is the (constant) radius of the electron

beam and assuming the radiation beam radius is that of the
electron beam, the scaled Rayleigh range may be written:
z̄R = ε̄/2k̄β where, the scaled electron beam emittance
ε̄ ≡ 4πε/λr. Hence, the usual FEL emittance criterion
becomes: ε̄ = 2k̄β z̄R . 1

All variables above have been scaled with respect to pa-
rameters in the 1D limit. The work of [13] defines a set of
3D scaled parameters: the FEL parameter ρ3D = B1/3ρ,
where B = (2z̄R)3/2 is called as the ‘diffraction parame-
ter’. The scaling can be related to that used here via ‘1D’
Rayleigh range z̄R by B = (2z̄R)3/2. In a similar way
to the 1D scaling a 3D gain length was defined as l̃g =

λu/4πρ3D so that the diffraction parameter B = 2zR/l̃g .
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If the working equations of (4..9) above are scaled with
respect to ρ3D, i.e. the substitution ρ = ρ3D/

√
2z̄R is

made into all dependent and independent variables and
these variables redefined so that z̃ = 2kuρ3Dz etc., then
all equations remain identical in form (i.e. with ‘bars’ re-
placed by ‘tildes’ in the independent variables), with the
exception of the wave equation (4) which is slightly modi-
fied to become:[

1

2

(
∂2

∂x̃2
+

∂2

∂ỹ2

)
− ∂2

∂z̃∂z̃2

]
Ã⊥ =

− 1

Bñp

∂

∂z̃2

N∑
j=1

p̃⊥jLjδ
3(x̃j , ỹj , z̃2j). (12)

The 3D FEL parameter ρ3D is then dependent only upon
the longitudinal electron current, and the transverse be-
haviour becomes explicit in the equations via the B param-
eter. For a constant ρ3D, increasing the transverse radius
reduces the transverse electron density, increasing B and
reducing the field source and generation.

The numerical implementation in Puffin uses the equa-
tions written in terms of the 1D scaling (4-9), mainly to
allow easy comparison with 1D simulations and analysis.
As has been shown, solutions in the 3D scaling of [13] are
simply obtained using the relations discussed above.

NUMERICAL SOLUTION
The parallel numerical algorithm used for the solu-

tion of the working equations (4..9) has been developed
from [14, 15, 16]. The coupled equations are advanced
in z̄ by using the split-step Fourier method [17], in which
the radiation field is described by the method of finite ele-
ments [9] and the electrons are simulated by a distribution
of charge weighted macroparticles [6].

Puffin is written in FORTRAN 95, and uses the libraries
FFTW 2.1.5 [18], used for the Fourier transforms, and Su-
perLU DIST [19, 20] to solve the sparse linear system of
equations for the finite element description of the driven
wave equation. The initial electron beam and radiation field
parameters are read in from an input data file, and in the fu-
ture it is possible that Puffin will be modified to read in an
electron beam distribution output by an external accelera-
tor code. Data output is in the SDDS format [21], and the
post-processing in the following examples is performed us-
ing MATLAB. The code is parallelized using MPI [22] in
a method outlined in [12], and more detail will be given in
[23].

SIMULATION
In this section, a full 3D simulation demonstrating Self

Amplified Coherent Spontaneous Emission is presented.
An electron beam with a ‘top-hat’ current distribution

of 6 cooperation lengths long in z̄2 and a Gaussian current
distribution in x̄ and ȳ, is propagated through an undula-
tor of scaled length z̄ = 8 using the following parameters:

ρ = 5.56 × 10−3, ε̄ = 0.6, āu = 1.0, σp2 = 0.002, γr =
700, ux = uy = 1 and f =

√
2.

The top-hat electron pulse should emit strong coherent
radiation from its head and tail which have large current
gradients. In this high slippage/short pulse regime, the co-
herent emission from the rear of the electron pulse will
propagate through the electron pulse and be amplified. CSE
from the tail at the start of the undulator will propagate
through and be amplified by the whole of the electron pulse
by the end of the undulator.

The electron beam of scaled emittance ε̄ = 0.6 is
matched to the focusing channel with betatron wavenum-
ber k̄β ≈ 0.09. These parameters give a scaled Rayleigh
range (z̄R = z/lg) of z̄R ≈ 3.3.

The simulation results are shown in Figure 1 at propaga-
tion distances z̄ ≈ 4 and z̄ ≈ 8. The scaled power P and
the transverse intensity distribution I⊥ are plotted at two
fixed points in z̄2 for each propagation distance.

In the earlier plots through the interaction, at z̄ ≈ 4,
the electron pulse lies between 4 < z̄2 < 10. The radia-
tion between 0 < z̄2 < 4 is the CSE from the front edge
of the electron pulse, having propagated forward into free
space. The region from 6 < z̄2 < 10 is in the ‘slippage
region’, and here the CSE emitted by the rear of the elec-
tron pulse has begun to be amplified. The steady-state re-
gion 4 < z̄2 < 6, has an evolution dominated by electron
shot-noise as seen from the transverse plot of the intensity
within this region which still has a poor spatial coherence.
In contrast, the intensity near the peak of the amplified CSE
demonstrates a good spatial coherence.

Later in the interaction, at z̄ ≈ 8, greater field amplifica-
tion via the FEL interaction is observed. The electron pulse
now lies between 8 < z̄2 < 14, and the system is domi-
nated by CSE emitted from the tail of the electron pulse at
z̄2 = 14, propagating through and being amplified by the
electron pulse. The intensity at z̄2 = 4.7, which previously
exhibited poor spatial coherence, now has a good spatial
coherence. This is not due only to the onset of the SASE
transverse mode selection process, but is also due to the
initial noisy spontaneous emission being dominated by the
amplified CSE. The scaled intensity plotted near the peak
of the amplified radiation pulse, at z̄2 = 11.8, is more nar-
rowly focused than that at z̄2 = 4.7, which has undergone
a greater free space diffraction having propagated outside
of the electron pulse.

CONCLUSION

The FEL simulation code Puffin has been presented.
This is the first code which includes 3D modelling of the
radiation field and electron beam using an unavaraged sys-
tem of equations in a variably polarised, modular undulator.
The equations allow a broad bandwidth of radiation fre-
quencies up to a high harmonic of the resonant frequency to
be modelled using a single complex field variable. While a
relatively simple electron beam focusing channel has been
implemented, a more realistic FODO-type focusing lattice

Proceedings of FEL2012, Nara, Japan MOPD12

FEL Theory

ISBN 978-3-95450-123-6

75 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s



Figure 1: Upper plots: Scaled power P (z̄2) - the scaled intensity integrated over the transverse plane (x̄,ȳ), as a function
of window scaled position z̄2 for two propagation distances z̄ ≈ 4 and 8. Lower plots: Transverse slices of the scaled
intensity I⊥(x̄, ȳ) at different window positions in z̄2 with propagation distances corresponding to the upper power plots.

could be included by placing quadrupoles between undu-
lator modules, and modelling the variation in off-axis un-
dulator field components. Future work should also involve
the post-processing of data files which is currently not per-
fomed in parallel. The output data files are also too large to
be easily portable and would benefit from being analysed
‘on-site’ using local visualisation servers. These issues are
currently being reviewed.
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