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Abstract
We present analysis of coherence properties of odd har-

monics radiated from a SASE FEL with planar undula-

tor. Nonlinear mechanism of harmonic generation is under

study. Temporal and space correlation functions, coherence

time and degree of transverse coherence are calculated by

means of numerical simulations with the code FAST. Sim-

ilarity techniques have been used to derive general coher-

ence properties of the radiation from optimized x-ray FEL

operating in the saturation regime.

INTRODUCTION
We consider free electron laser (FEL) amplifier - device

in which electron bunch amplifies electromagnetic radia-

tion during single pass of an undulator. The FEL collec-

tive instability in the electron beam produces an exponen-

tial growth (along the undulator) of the radiation and the

modulation of the electron density on the scale of undu-

lator resonance radiation wavelength. Amplification pro-

cess in a Self Amplified Spontaneous Emission (SASE)

FEL [1] starts from the shot noise in the electron beam.

When the electron beam enters the undulator, the presence

of the beam modulation at frequencies close to the reso-

nance frequency initiates the process of radiation. The fluc-

tuations of current density in the electron beam are uncor-

related not only in time but in space, too. A big number

of transverse mode is excited. TEM00 mode with highest

gain dominates when undulator length progresses. Coher-

ence time and degree of transverse coherence grow in the

exponential amplification stage, and reach maximum val-

ues near the saturation point. Saturation length is limited

from nine to eleven field gain length for VUV and x-ray

FELs which fundamentally define coherence properties of

the radiation [2–6]. Poor longitudinal coherence also af-

fects transverse coherence [2, 3].

Radiation from SASE FEL with planar undulator con-

tains visible contribution of odd harmonics. Parame-

ter range where intensity of higher harmonics is defined

mainly by nonlinear beam bunching in the fundamen-

tal harmonic has been intensively studied in refs. [7–16].

Comprehensive studies of nonlinear harmonic generation

have been performed in [16] in the framework of the one-

dimensional model. General features of harmonic radia-

tion have been determined. It was found that coherence

time at saturation falls inversely proportional to harmonic

number, and relative spectrum bandwidth remains constant

with harmonic number. In this paper we extend studies

of higher harmonics taking into account diffraction effects.

We consider parameter range when intensity of higher har-

monics is mainly defined by nonlinear harmonics gener-

ation mechanism. The results have been obtained with

time-dependent, three-dimensional FEL simulation code

FAST [17] performing simulation of the FEL process with

actual number of electrons in the beam. Using similar-

ity techniques we present universal dependencies for the

main characteristics of the SASE FEL covering all prac-

tical range of optimized X-ray FELs. Present studies are

limited with the third harmonic.

OPTIMIZED XFEL
Design of the focusing system of XFEL assumes nearly

uniform focusing of the electron beam in the undulator, so

we consider axisymmetric model of the electron beam. It

is assumed that transverse distribution function of the elec-

tron beam is Gaussian, so rms transverse size of matched

beam is σ =
√
εβ ,where ε = εn/γ is rms beam emittance

and β is focusing beta-function. In the case of negligibly

small effects of the space charge and energy spread, oper-

ation of the FEL amplifier is described by the diffraction

parameter B and the betatron motion parameter k̂β : [18]:

B = 2Γσ2ω/c , k̂β = 1/(βΓ) , (1)

where Γ =
[
Iω2θ2sA

2
JJ1/(IAc

2γ2
zγ)

]1/2
is the gain param-

eter. When describing shot noise in the electron beam, one

more parameter appears, the number of electrons in the vol-

ume of coherence: Nc = I/(eωρ), where ρ = cγ2
zΓ/ω is

the efficiency parameter. The following notations are used

here: I is the beam current, ω = 2πc/λ is the frequency

of the electromagnetic wave, θs = Krms/γ, Krms is the

rms undulator parameter, γ is relativistic factor, γ−2
z =

γ−2+θ2s , kw = 2π/λw is the undulator wavenumber, IA =
17 kA is the Alfven current. Coupling factor is AJJ1 = 1
for helical undulator and AJJh = J(h−1)/2(K

2
rms/2(1 +

K2
rms))−J(h−1)/2(K

2
rms/2(1+K2

rms)) for planar undula-

tor. Here Jn are the Bessel functions of the first kind, and

h is harmonic number.

Target value of interest for XFEL optimization is the

field gain length of the fundamental mode. For this prac-

tically important case the solution of the eigenvalue equa-

tion for the field gain length of the fundamental mode and

optimum beta function are rather accurately approximated

by [19]:

Lg = 1.67

(
IA
I

)1/2
(εnλw)

5/6

λ2/3

(1 +K2)1/3

KAJJ1

βopt � 11.2

(
IA
I

)1/2
ε
3/2
n λ

1/2
w

λKAJJ1
, (2)

It follows from (1) and (2) that diffraction parameter B and

parameter of betatron oscillations, k̂β are functions of the
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only parameter ε̂ for optimized x-ray FEL. As a result, sat-

uration characteristics of the SASE FEL written down in

the dimensionless form are functions of two parameters,

ε̂ and parameter Nc defining the initial conditions for the

start-up from the shot noise [3–5]. Dependence of charac-

teristics on the value of Ncis very slow, in fact logarithmic.

Properties of the third harmonic are also function of emit-

tance parameter ε̂. In the case when mechanism of non-

linear harmonic generation is dominating, dependencies on

the coupling factor can be explicitly isolated. This property

provides the possibility of universal description of charac-

teristics of higher harmonics.

GENERAL DEFINITIONS
The first-order transverse correlation function is defined

as

γ1(�r⊥, �r′⊥, z, t) = 〈Ẽ(�r⊥, z, t)Ẽ∗(�r′⊥, z, t)〉[
〈|Ẽ(�r⊥, z, t)|2〉〈|Ẽ(�r′⊥, z, t)|2〉

]1/2 ,

where Ẽ is the slowly varying amplitude of the amplified

wave. For a stationary random process γ1 does not depend

on time, and the degree of transverse is:

ζ =

∫ |γ1(�r⊥, �r′⊥)|2I(�r⊥)I(�r′⊥) d�r⊥ d�r′⊥
[
∫
I(�r⊥) d�r⊥]2

, (3)

where I(�r⊥) = 〈|Ẽ(�r⊥)|2〉. The first order time correla-

tion function, g1(t, t
′), is calculated in accordance with the

definition:

g1(�r, t− t′) =
〈Ẽ(�r, t)Ẽ∗(�r, t′)〉[

〈| Ẽ(�r, t) |2〉〈| Ẽ(�r, t′) |2〉
]1/2 , (4)

For a stationary random process time correlation functions

are functions of the only argument, τ = t− t′. The coher-

ence time is defined as τc =
∞∫
−∞

|g1(τ)|2 d τ . Normalized

coherence time is defined as τ̂c = ρωτc. Normalized FEL

efficiency is defined as η̂ = P/(ρWb) where P is radiation

power, and Wb = γmc2I/e is electron beam power. If

one traces evolution of the brilliance of the radiation along

the undulator length there is always the point, which we

define as the saturation point, where the brilliance reaches

maximum value [3].

PROPERTIES OF THE RADIATION
Simulations have been performed with three-

dimensional, time-dependent FEL simulation code [17]

tracing actual number of electrons In our simulation

procedure particles correspond to real electrons randomly

distributed in full 6D phase space. This allows us to avoid

any artificial effects arising from standard procedures

of macroparticle loading as we described earlier [3].

Simulations of the FEL process have been performed for

the case of a long bunch with uniform axial profile of

the beam current. Such a model provides rather accurate

predictions for the coherence properties of the XFEL,

since typical radiation pulse from the XFEL is much

longer than the coherence time. Calculations has been

performed with FEL simulation code FAST using actual

number of electrons in the beam. The value of parameter

Nc = 8 × 105 corresponds to the parameter range of

XFEL operating at the radiation wavelength about 0.1 nm.

Simulated range covers the value of emittance parameter ε̂
from 0.25 to 2.

Output of the simulation code are arrays containing com-

plex values of the radiation field amplitudes. Then we ap-

ply statistical analysis, and calculate physical values as it

has been defined in the previous section. Finally, applica-

tion of similarity techniques allows us to extract universal

parametric dependencies of the main characteristics of the

optimized XFEL.

We start with specific numerical example corresponding

to the value of ε̂ = 0.5. This operating point correspond

to maximum degree of transverse coherence which can be

achieved in SASE FEL [3, 5, 6]. Figure 1 shows slice of

temporal structure of the radiation pulse from SASE FEL

operating in the saturation regime. Already this specific

example brings a lot of physical information. We note that

spikes of all harmonics are well aligned in space illustrat-

ing an effect of nonlinear harmonic generation: higher har-

monics radiate only by those parts of the electron bunch

which has been effectively modulated by the fundamental

harmonic. We also notice that typical scale of the radiation

intensities of the 3rd (5th) harmonic is in the range of a per

cent (per mille) level with respect to the fundamental. Even

brief look on spike widths in Fig. 1 gives us an idea that co-

herence time of the 3rd harmonic is significantly less than

that of the fundamental harmonic. Spikes of the 5th har-

monics are shorter than those of the 3rd harmonics, thus

coherence time of the 5th harmonic should be even less.

Plots in Fig. 2 show evolution along the undulator of the

radiation power and brilliance. Longitudinal coordinate is

normalized to the saturation length of the fundamental har-

2πε/λ
Figure 1: Optimized XFEL. Temporal structure of the ra-

diation pulse in the saturation point for ε̂ = 0.5. Black,

red, and green lines refer to the 1st, 3rd, and 5th harmonic,

respectively.
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Figure 2: Optimized XFEL. FEL power and brilliance ver-

sus undulator length. All values are normalized to the val-

ues corresponding to the values at the saturation point of

the 1st harmonic. Black, red, and green lines refer to the

1st, 3rd, and 5th harmonic, respectively.

monic. Brilliance and power for harmonics are normalized

to the values corresponding to the saturation point of the

fundamental harmonic. We see that radiation powers of

all harmonics continue to grow after the saturation point of

the fundamental harmonic. Power growth of the 3rd and

the 5th harmonic is visibly faster than that of the funda-

mental. An important feature is also that brilliance of the

higher harmonics continue to grow as well after the satu-

ration point. Maximum brilliance of the higher harmonics

is reached in the deep nonlinear regime which is mainly

due to faster growth of the harmonic radiation power with

respect to the fundamental. This means that in parameter

range of ε̂ about 0.5 electron beam after saturation remains

relatively good amplification media for higher harmonics.

Contribution of higher harmonics into total radiation power

depends strongly on how long amplification process devel-

ops after the saturation point.

Plots in Fig. 3 show evolution along the undulator of the

coherence time and degree of transverse coherence. We

multiplied coherence time by harmonic number h to bring

all curves into scale. We find important feature that coher-

ence time in the saturation regime scales inversely propor-

tional to harmonic number. Also, relative spectrum band-

width Δωh/ωh remains constant for all harmonics. This

finding confirms the result obtained earlier in the frame-

ζ

πε λ

τ

πε λ

Figure 3: Optimized XFEL. Degree of transverse coher-

ence, ζ, and normalized coherence time, τ̂c versus undu-

lator length for ε̂ = 0.5. Black, red and green lines refer

to the 1st, 3rd and 5th harmonic, respectively. Coherence

time is multiplied for corresponding harmonic number h.

ζ

2πε/λ

Figure 4: Optimized XFEL. Degree of transverse coher-

ence ζsat in the saturation versus parameter ε̂ = 2πε/λ.

Black and red lines refer to the 1st, 3rd harmonic, respec-

tively.

work of one dimensional model [16]. Note that recent

measurements of the harmonic properties at FLASH and

LCLS [20, 21] are in good qualitative agreement with the

results reported here.

Figure 2 shows evolution of the degree of transverse co-

herence along the undulator. Note that we illustrate param-

eter space providing maximum degree of transverse coher-
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2πε/λ

Figure 5: Optimized XFEL. Ratio of powers in the 3rd

(black line) and the 5th harmonic (red line) to the power

of the fundamental harmonic versus parameter ˆε = 2πε/λ.

SASE FEL operates at the saturation point.

ence in the fundamental harmonic (about 95%) for opti-

mized x-ray FEL. An important observation is that the de-

gree of transverse coherence for higher harmonics is visi-

bly less. There is nothing unusual in this result. Qualita-

tively it can be explained by general feature of frequency

multiplication schemes which also amplify noise progres-

sively with harmonic number [22]. Fundamental harmonic

already contains visible noise content resulting in reduced

degree of transverse coherence, and we can readily expect

more reduction for higher harmonics. An example of sim-

ilar physical behavior is degradation of longitudinal coher-

ence in high gain harmonic generation scheme [23].

As we already mentioned above, characteristics of the

optimized FEL in the saturation point depend on the only

parameter, ε̂. Figure 4 shows dependence of the degree of

transverse coherence for the 1st and the 3rd harmonic on

the value of emittance parameter. We see that maximum

values of the degree of transverse coherence correspond to

the values of ε̂ about 0.5. While coherence properties of

the fundamental harmonic do not change too much when

ε̂ increases to 2, we obtain their significant degradation for

the 3rd harmonic.

When we analyze expressions for the radiation power

we find that the dependencies for the ratios of the power

of higher harmonics to the fundamental become to be uni-

versal functions of emittance parameter when we factorize

them with factor A2
JJh/A

2
JJ1. Relevant plots are presented

in Fig. 5. For large values of the undulator parameter K
asymptotic values of A2

JJh/A
2
JJ1 are equal to 0.22 and 0.11

for the 3rd and the 5th harmonic, respectively. In the range

of emittance parameter from 0.25 to 2 contributions to the

total power of the 3rd (5th) harmonic is between 0.3 - 1.4%

(0.07 - 0.16%). Note that contribution of higher harmonics

to the total power grows in the deep nonlinear regime, and

may constitute substantial amount (See Fig. 2).

SUMMARY
In conclusion we make brief summary of our findings

related to the saturation regime. Degree of transverse co-

herence of higher harmonics is less than that of the fun-

damental. Coherence time for harmonics scales inversely

proportional to the harmonic number. Relative width of the

radiation spectrum is the same for all harmonics.
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