

DESIGN AND FIRST EXPERIENCE WITH THE FERMI SEED LASER

<u>M. B. Danailov</u>, A. Demidovich, R. Ivanov, I. Nikolov, P. Sigalotti, P.Cinquegrana Sincrotrone-Trieste, Basovizza, Trieste

- > FERMI SEED LASER REQUIREMENTS
- > OPTICAL SCHEME AND LAYOUT LASER
- **> BEAM TRANSPORT AND INSERTION INTO FEL**
- > LOCKING/SYNCHRONIZATION TO THE FERMI MASTER OSCILLATOR
- SUMMARY AND PLANS FOR FUTURE UPGRADES

HGHG WORKS WELL!!!

HGHG SCHEME MAIN REQUESTED PARAMETERS:

- >UV peak power ≥ 100 MW
- >Wavelength Tuning range : 240-360 nm (initial request), 200-280 nm (current)
- Pulse duration (FWHM): 100 fs range, longer for the comissioning phase
- ➢Pulse arrival timing jitter : <50 fs RMS</p>
- Pulse energy stability: <4% , goal <2%</p>
- ➤Central wavelegth stability: 10⁻⁴
- >Beam dimention (1/e2 intensity): 0.8-1mm , possibly variable
- High reliability and hands-free operation

Beam focus: 11.2 m from insertion window and about 20 m from laser room

aelettra

FERMI SEED LASER TUNABILITY

STATUS:

Fixed wavelength configuration in use until July 2011

Wavelength: 260-262 nm (manually tunable)

UV peak power ≥ 400 MW

Pulse duration (FWHM): 150-220 fs range

Energy per pulse >80 µJ, smoothly variable down to nJ level

Beam dimention (1/e² intensity): 0.8 or 1 mm 1/e2 diameter at virtual undulator

Tunable seed for next FERMI Run:

Wavelength: 235-260 nm

UV peak power ≥ 100 MW (>80 MW at 235 nm)

Pulse duration (FWHM): 180-200 fs range

Energy per pulse >20 μ J (>15 μ J at 235 nm), smoothly variable down to nJ level

Beam dimention (1/e² intensity): 1 mm 1/e² diameter at virtual undulator

FERMI SEED LASER

WAVELENGTH(nm)

@elettra

Opt Table 1: main laser system Opt Table 2 (to the left, not shown): locking setup, future HHG laser aelettra

Opt Table 1: main laser system Opt Table 2 (to the left, not shown): locking setup, future HHG laser aelettra

Beam Transport and Seed Insertion Breadboard

Distance Laser Exit-Undulator >20 m , with 12-18 mirrors in beam path

Laser beam position monitored on 7 CCD cameras

Beam steering : 2 kinematic mounts with steppers in IR and 1 piezo based tip-tilt in UV,

2 kinematic mounts with stepper motors on the insertion breadboard

UV beam on the main laser table deviated by the mirror on piezo tip-tilt mount for fine steering

SL insertion breadboard FEL1 photo (left) and optical scheme (right)

Beam Transport and Seed Insertion Breadboard

Distance Laser Exit-Undulator >20 m , with 12-18 mirrors in beam path

Laser beam position monitored on 7 CCD cameras

Beam steering : 2 kinematic mounts with steppers in IR and 1 piezo based tip-tilt in UV,

2 kinematic mounts with stepper motors on the insertion breadboard

UV beam on the main laser table deviated by the mirror on piezo tip-tilt mount for fine steering

SL insertion breadboard FEL1 photo (left) and optical scheme (right)

Beam Transport and Seed Insertion Breadboard

Distance Laser Exit-Undulator >20 m , with 12-18 mirrors in beam path

Laser beam position monitored on 7 CCD cameras

Beam steering : 2 kinematic mounts with steppers in IR and 1 piezo based tip-tilt in UV,

2 kinematic mounts with stepper motors on the insertion breadboard

UV beam on the main laser table deviated by the mirror on piezo tip-tilt mount for fine steering

SL insertion breadboard FEL1 photo (lent) and optical scheme (right)

LOCKING&SYNCRONIZATION

STATUS: since the beginning of last FERMI run the locking&synchronization scheme developed at Elettra is fully operational, both with RF based (3 GHz harmonic) phase detection and with optical phase detection

Long term (8 hours) performance of RF harmonic (left) based and optical (right) phase detection

Relative phase noise curve Blue: RF locking, 54 fs 100 Hz-10 MHz Red: optical locking, 51 fs 100 Hz-10 MHz

- FERMI comissioning during last run confirmed that HGHG seeding is valuable from both FEL physics and user point of view
- The Seed Laser met most requirements and has shown good reliability
- The Fixed Wavelength option might proove an interesting option also for the future, allowing freedom for more 'exotic' regimes
- >Further impovements of the FERMI seed system:
- -New version of the optics and seed insertion for FEL2
- -Implementation of a beam quality measurement for the OPA based UV seed (multiplexing several images on the same CCD)
- -Roots towards improving OPA beam quality under consideration
- -Feedaback on beam position on the virtual undulator
- -Going to shorter wavelengths (Sub-200 nm seed, HHG based seed) under study