SACLA (XFEL/SPring-8) Project - Status of Beam Commissioning -

Hitoshi Tanaka,

on behalf of all the staffs contributing to the SACLA beam commissioning

XFEL Research & Development Division, RIKEN SPring-8 Center, RIKEN Harima Institute

1. SACLA System

The world's first compact XFEL based on in-vacuum UNDs designed to realize;

2. Construction & Commissioning Status of SACLA

- 2005 Prototype system constructed
- 2006 Construction of SACLA started

- 2009 Accelerator & undulator buildings completed
- 2010 RF aging started 2011
 - 21 Feb. Beam commissioning started
 - 23 Mar. Full energy accel. achieved & und rad observed
 - 7 Jun. First SASE lasing at 0.12 nm
 - 17 Jun. Facility inspection completed

28 Jul. Beam tuning before summer shutdown terminated

Reinforcing Rod of Pile

2. Commissioning Schedule until Summer

3. Present Laser Performance (1)

Present Result Summary w/o Laser Heater

Shortening of Laser Wavelengths

~4 GW

Lasing wavelength range

0.8 ~ 1.6 Å

Laser being reproducible

• w/o beam FB keeping the peak current

• at 60~70% of peak intensity

3. Present Laser Performance (2)

3. Present Laser Performance (3)

3. Present Laser Performance (4)

3. Present Laser Performance (5) Variation of Laser Profile λ =1.2 Å

3. Present Laser Performance (6)

Laser Spatial Profile after Monochromatization

Photon energy: 10 keV 110 m from the exit of ID18

Si(111) DCM covering photon energy range from 4 to 30 keV

3. Present Laser Performance (7) **Focused down to 1.1** μm x 0.9 μm (FWHM)

Ablation pattern by focused XFEL on gold-deposited film

Collaboration with Osaka Univ. (Prof. Yamauchi) and Univ. Tokyo (Prof. Mimura)

4. Accelerator Performance (1)

RF Stability High enough for Achieving Stable Bunch Compression

Stability of cavity pickup signals (rms of 10 shots ave. for 12hr)

unit		amplitude		phase (deg.)	
		mes.	target	mes.	target
238MHz	SHB	1.0×10^{-4}	1 × 10 ⁻⁴	0.0067	0.01
				78 fs	120 fs
5712MHz	CB01-1	5.6 × 10 ⁻⁴	1×10 ⁻³ *	0.032	0.1*
				16 fs	49 fs

* tolerance for C-band correction accelerator

4. Accelerator Performance (2) <u>RF System Satisfying a Target Gradient of 35 MV/m</u>

4. Accelerator Performance (3)

Longitudinal Beam Profile over Multi-stage Bunch Compressor

FEL'11@Shanghai

4. Accelerator Performance (4) <u>Transverse Beam Profile over Linear Accelerator</u>

2011/8/23

4. Accelerator Performance (5) Beam Normalized Projection Emittance

5. Undulator Performance (1)

XFEL Undulator Main Parameters

Magnet Structure	Hybrid Type	
Material	NdFeB	
Length (m)	5	
Period Length (mm)	18	
Number of Periods	277	
Number of Undulators	18	
Minimum Gap (mm)	3.5	
Maximum K	2.2	
K@λ=0.12 nm, E=7 GeV	~1.8	

5. Undulator Performance (2)

XFEL Undulator Tuning Step

Def. UND=Undulator, PS=Phase Shifter

- 1. Undulator Spectrum Measurement & Check
- 2. Correction Table for UND & PS Gap Changes < a few μm
- 3. K-value Fine Tuning $\Delta K/K \sim 5 \times 10^{-4}$ (3 µm)
- 4. Electron Beam Orbit Setting & Vertical Alignment of UND
- 5. PS Gap Preset $1 \mu rad$ $\Delta K/K \sim 1.5 \times 10^{-4} (50 \mu m)$
- UND K-value Tapering (Peak Current Dependence only Considered)

After lasing, by using laser intensity as a probe

- 7. PS Gap Optimization
- 8. UND K-value Tapering Optimization

5. Undulator Performance (3)

5. Undulator Performance (4)

After full-beam tuning at the end of July, each spatial distribution at the low energy tail became more clear

5. Undulator Performance (5)

6. Remaining Issues & Future Perspectives

Present schedule is

- Tuning restart Sep. 12
- Test use of SASE Middle of Oct.
- User Operation March 2012

Remaining issues are

- Beam profile measurement downstream of BC3
- Lower pulse energy compared with the expectation
- Unverified alignment precision of beam orbit over UND
- Vertical beam center of mass fluctuation
- Introduction of Long pulse mode (high charge acceleration)
 - Feedback control of bunch length drift

COTR Observed in SACLA

Coherent OTR (COTR) was actually a serious problem at the early stage of the beam commissioning. Now, we can tune the bunch compressor owing to a spatial mask in front of the lens.

YAG:Ce Screen

Temporal profile measurement (screen monitor images at RF deflector)

Interpretation of the Measured Gain Curve

