Three Bunch Compressor Scheme for SASE FEL

HeungSik Kang

Pohang Accelerator Laboratory

XFEL Requirements

- Photon beam requirements from users
 - Wavelength : 0.1 nm
 - Photon Flux : > 1×10^{12} photons / pulse (brightness ~ 1×10^{33})
 - FEL power (29 GW) x Pulse length (60 fs FWHM) = 1×10^{12} photons / pulse
 - As many electrons in a pulse as possible should contribute to SASE FEL interaction
- Electron beam requirements
 Transverse emittee en
 - 1. Transverse emittance

$$\frac{\varepsilon_n}{\gamma} < \frac{\lambda_r}{4\pi}$$
 * Projected emittance: 0.5 µm-rad
for 0.2 nC beam

2. Energy spread

$$\sigma_{\delta} < \rho \approx \frac{1}{4} \left(\frac{1}{2\pi^2} \frac{I_{pk}}{I_A} \frac{\lambda_u^2}{\beta \varepsilon_N} \left(\frac{K}{\gamma} \right)^2 \right)^{1/3}$$

* Correlated energy spread < FEL parameter

Bunch Compression

Bunch length σ_z

$$\sigma_z = \langle z^2 - \langle z \rangle^2 \rangle^{1/2} = \sqrt{(1 + hR_{56})^2 \sigma_{z_i}^2 + (aR_{56}\sigma_{\delta_i})^2} \approx |1 + hR_{56}|\sigma_{z_i}$$

 σ_z , σ_{zi} are given variables, and **h** x R₅₆ = constant.

Energy chirp h and R_{56} are to be carefully chosen considering emittance growth and correlated energy spread.

Wake in Accelerating Structures

Wake in Accelerating structures cancel energy chirp after compression (Karl L.F. Bane, "Short-range dipole wakefields in accelerating structures for the NLC")

- If the bunch current after bunch compression is given, the length of accelerating structures determines the required energy chirp.
- A short linac requires a smaller energy chirp than a long linac like LCLS, which means a short linac requires a larger R56 than a long linac.
- A large R56 may give birth to large emittance increase at the bunch compressor due to CSR

Coherent Synchrotron Radiation

• CSR generates energy spread in bends

- Courtesy P. Emma
- Causes bend-plane emittance growth (short bunch worse)

$$\frac{\epsilon}{\epsilon_0} \approx \sqrt{1 + \frac{(0.22)^2}{36} \frac{r_e^2 N^2}{\epsilon_N \beta_i \gamma} \left(\frac{\theta^5 L_B}{\sigma_z^4}\right)^{2/3} \left[L_B^2 \left(1 + \alpha_i^2\right) + 9\beta_i^2 - 6\alpha_i \beta_i L_B\right]}$$

 $N = 6 \times 10^9$, $\theta = 30 \text{ mrad } (1.72^\circ)$, $L_T = 20 \text{ m}$, $\varepsilon_N = 1 \mu \text{m}$, $\gamma mc^2 = 4 \text{ GeV}$, $\sigma_z = 20 \mu \text{m} \implies \Delta \epsilon / \epsilon_0 \approx 25\%$

- A large bend angle gives birth to a large emittance increase.
- A higher beam energy is preferred in the bunch compressor

Incoherent Synchrotron Radiation Emittance Growth

Incoherent synchrotron radiation (ISR) in chicane bends at **high** energy *E*, generates uncorrelated energy spread, diluting phase space in horizontal plane (dilutes 'slice' emittance) ...

T. Raubenheimer

$$\frac{\Delta\varepsilon}{\varepsilon_0} \approx aE^6 \frac{\left|\theta^5\right|}{\varepsilon_N L_B^2} \left[\Delta L + L_B + \frac{\widehat{\beta} + \widecheck{\beta}}{3}\right], a \cong 8 \times 10^{-8} \,\mathrm{m}^2 \cdot \mathrm{GeV}^{-6}$$

Chicane bends should be weak and long (L_B), and beam energy should be as low as possible.

Two Bunch Compressor Scheme

Three Bunch Compressor Scheme

 A short Linac → small energy chirp → big R56 → big bend angle in chicane → large emittance increase due to CSR and ISR

 $h \ge R_{56} = \text{constant} = h \ge R_{56}$

- 2ND BC in Two BC Scheme is splited into two.
- 3rd BC has a small R56 to minimize CSR effect

- weaker chicane BC3 \rightarrow less CSR

Three Bunch Compressor Scheme

- 3 Bunch compressor Scheme
 - gives a better beam parameter than two bunch compressors

		Two Bunch compressors	Three BCs
	Bend Angle [deg]	4.5	4.5
BC1 (420 MeV) BC1 (420 MeV) BC2 (2.8 GeV) BC2 (2.8 GeV) BC3 (4 GeV) BC3 (4 GeV) BC3 (4 GeV) BC3 (2 GeV	Distance bet. Two dipoles [m]	3.2	3.2
	R56 [cm]	-4.11	-4.11
BC2 (2.8 GeV)	Bend Angle [deg]	2	2.6
	Distance bet. Two dipoles [m]	11	8
	R56 [cm]	-2.75	-3.4
BC3 (4 GeV)	Bend Angle [deg]		1.8
	Distance bet. Two dipoles [m]		3.5
	R56 [cm]		-0.74
	L1 phase [deg]	-18	-18
	L2 phase [deg]	-27.5	-18.6
X-band phase [deg]		-166	-166
LTU (dogleg) dipole bend angle / length		0.5 deg / 1.9 m	0.3 deg / 0.5 m
Co	Correlated energy spread		< 5 x 10-4
Em	nittance increase by CSR	small	small

Major Parameters of PAL XFEL

	FEL wavelength [nm]	0.1
Electron	Beam energy [GeV]	10
Linac	Beam charge [nC]	> 0.2
	Beam emittance [mm-mrad]	< 0.5
	Injector Gun	Photocathode RF-gun
	Peak current at undulator [kA]	> 3
	Repetition rate	120 Hz
	Number of Bunch	Single
	Linac Structure	S-band
Undulator	Undulator type	Out-vacuum
	Undulator Period [cm]	2.46
	Undulator Gap [mm]	6.8
	Undulator parameter, K	2.076
	Saturation Length [m]	56
FEL	FEL Radiation Power [GW]	> 29
	Photon beam length [fs]	60
	FEL Photons/pulse	> 1.0 E+12

- Wavelength
 - Soft x-ray: 1 nm ~ 10 nm
 - Hard X-ray: 0.7 ~ 0.1 nm
 - Extended to 0.06 nm
- Photon beam Length
 - Nominal : 30 ~ 100 fs (200 pC)
 - Short : < 5 fs (20 pC)</p>
 - Ultra short: < 0.5 fs by ESASE scheme
- Undulator Beamline

: 3 Hard X-ray / 2 Soft X-ray lines

Radiation Power of 0.1 nm @Z=132 m

- Untapered : 14 GW (4.7E+11 photons)
- Tapered : 55 GW (1.8E+12 photons)

Linac and BTL Design

- Solution 3 Bunch Compressors: the beam emittance is well preserved along the Linac and BTL by reducing CSR effect, and the correlated energy spread is controlled well below the FEL parameter.
- Beam Current profile has a shape without horn at the head, which can help reduce the resistive wall wake effect in small gap undulator.

Linac & BTL Lattice

Start-to-End Simulation

TOLERANCE BUDGET

• P_{sen} is value of sensitivity-individual table.

Parameter	# of klystron	sym bol	$\Delta I/I0 = +10\% (P_{sen})$	$<\Delta E/E_0> = +0.1\%(P_{sen})$	$\epsilon_{nx} = +5\%$ (P _{sen})	Tolerance (rms)	unit
Mean L1 rf phase	3	ϕ_1	-0.17	2.1	-0.12	0.05	deg.
Mean X rf phase	1	ϕ_{X}	0.26	-3.9	0.19	0.05	deg.
Mean L2 rf phase	11	ϕ_2	-0.33	1.46	-0.23	0.1	deg.
Mean L3 rf phase	6	ϕ_3	-23.8)	96.5	-17.4	0.1	deg.
Mean L4 rf phase	26	ϕ_4	87053.0	58.6	-3938.99	0.1	deg.
Mean L1 rf voltage	3	V_1	2.4	8.5	4.04	0.05	%
Mean X rf voltage	1	V_X	1.7	-14.7	0.67	0.05	%
Mean L2 rf voltage	11	V_2	-57.7	1.43	-12.6	0.1	%
Mean L3 rf voltage	6	V_3	-25.0	1.76	-17.9	0.1	%
Mean L4 rf voltage	26	V_4	18555.7	0.87	-6455.36	0.1	%
B.C1 angle	-	θ_1	0.34	-4.7	0.18	0.01	%
B.C2 angle	-	θ_2	0.2	-3	0.17	0.01	%
B.C3 angle	-	θ_3	1.7	25.1	1.10	0.01	%
Sum $[\Sigma(\text{tolerance})^2/P_{\text{sen}}^2]$			0.45	0.16	0.66	$\sum (0.44 + (toler))$	$(ance)^2 = 1.05$
Criterion: $\sqrt{\Sigma}$	$(0.44 + \frac{(toler)}{F})$	ance) ²	(0.44 is por variable.	tion for unconsi It is determined	dered by	$V^{(0.44+}$ F (Emittance gro	$\frac{1}{2}$ = 1.05

referring LCLS CDR)

ough criterion.)

lattice for Soft X-ray Line

- L1, X, BC1, L2, and BC2 has the same parameters as Hard X-ray
- No need of pulse-by-pulse RF phase control
- Very flexible in control of bunch current by changing the BC3_S bend angle
 - Switching by a kicker and a septum magnet
 - Orbit variation from the switching by kicker is acceptable for Soft X-ray FEL beamline
 - Simultaneous operation is feasible for Soft X-ray and Hard X-ray FEL

Lattice Design for Soft X-ray Lune

PAL XFEL: HeungSik Kang (hskang@postech.ac.kr)

R56 Tunable Dogleg Branch for Soft X-ray

- 3-degree bend
- R56 tunable
- Small betas in large angle dipoles

Bend angle [deg]	Bend angle of center dipole	R16	R26	R56
3	0.45	1.9 x 10-8	-2.4 x 10-10	-8.9 x 10-5
3	0.47	1.5 x 10-9	-1.9 x 10-11	-6.1 x 10-6
3	0.48	-8.0 x 10-9	9.8 x 10-11	3.6 x 10-5

2011-09-15

Reduction of Large Correlated Energy spread

by Resistive Wall Longitudinal wakefield of SS pipe

Resistive Wall wake of 100-m long SS pipe (r=5 mm)

- Large correlated energy spread needs to be reduced at the subsequent Stainless Steel vacuum pipes.
- DC conductivity is only considered in the calculation.

50-m SS pipe (r=5 mm)

65-m SS pipe (r=5 mm)

100-m SS pipe (r=5 mm)

Acknowledgements

Thanks to...

- Paul Emma, Zhirong Huang, and Karl L.F. Bane at SLAC
- Kwang-Je Kim at **ANL**
- Simone Di Mitri at Sincrotrone Trieste ELETTRA Laboratory