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    In this paper, we report experimental results on 
photoemission from copper and silver surfaces. Using the 
technique of angle resolved photoemission spectroscopy 
(ARPES), we demonstrate that, for excess energy around 
0.5 eV, the photoelectrons from the Cu(111) and Ag(111) 
surfaces generated by p-polarized light originate primarily 
from the well-known surface state with normalized 
emittance only a fraction of that of the polycrystalline 
copper cathode presently used in the RF guns. Meanwhile, 
we demonstrate that the enhancement of the quantum 
efficiency (QE) at grazing angle is closely related to the 
surface state as well. Furthermore, we show that the 
surface state can be easily restored by a simple anneal 
process, thus pointing to a practical way to reducing the 
emittance and QE of a metal cathode simultaneously. 

INTRODUCTION 

Over the past four decades, the free electron laser (FEL) 
has grown from a novel idea [1,2] to a sophisticated 
scientific tool generating the brightest x-ray pulses made 
by man [3,4]. The successful user operation of soft x-ray 
facilities such as FLASH [5] and hard x-ray facilities such 
as LCLS [6] has help to make significant progress in 
science. The success of the existing facilities in turn fuels 
demand for more FELs, some are under construction and 
others are in the planning stage. Meanwhile, research 
activities to develop even better FELs in the future greatly 
intensified in recent years, making FEL arguably the most 
active branch in the field of accelerator physics. At 
present, the research activities on FELs have been largely 
focused on two areas. On the one hand, many new 
schemes of the FEL have been proposed, including 
methods of generating attosecond [7-9] and short 
wavelength x-ray pulses [10,11]. Notably, one new and 
simpler way of producing high harmonics called ECHO 
has recently been confirmed experimentally [12].  

On the other hand, significant improvement in the 
design and performance of the front end has been 
achieved [13,14]. As a result, the final transverse 
emittance of the beam, which is a key indicator of the 
quality of the beam, both in terms of brightness and the 
photon energy reach, is only a factor of 2 larger than the 
initial value out of the cathode [15]. In another word, the 
largest contribution to the transverse emittance comes 
from the cathode itself, which may potentially become 
even larger if the new schemes of generating ellipsoidal 
bunches become readily available [16-18]. This demand 

for lower emittance, together with the goal of higher 
quantum efficiency to support high repetition rate FELs, 
has stimulated a strong resurgence of the research 
activities in photocathodes [19]. Along with steady 
improvement of understanding for traditional 
photocathodes such as cesieted GaAs and copper, new 
types of photocathodes such as the diamond-amplifier 
cathode, the needle cathode and the metal cathode 
covered with thin oxide layers have been investigated, 
both experimentally and theoretically, which is a direct 
result of the increasingly close collaboration between 
accelerator physicists and the surface scientists. In 
addition, experimental studies have been carried out to 
determine the lower bound of the emittance under various 
conditions [20,21]. In this paper, we report results of our 
experimental investigation of the photoemission 
properties of the copper and silver, with the emphasis on 
finding a way to improve the performance of the copper 
cathode, which is widely used in RF guns.  

EXPERIMENTAL DETAILS 
Our experiments were carried out in our surface science 

lab built for cathode research. The single crystal copper 
sample is mounted in a magnetically shielded UHF 
chamber equipped with standard surface science 
apparatus such as an Ar ion gun and an LEED. A 
continuously tunable plasma laser provides the light souce 
to acurately measure the work function. A pulsed 
Ti:Sapphire laser (Coherent MIRA) is used to generate 
photoelectrons when the quantum efficiency and energy-
momentum spectrum are measured. The energy-
momentum spectrum is obtained using a delay-line 
detector manufactured by Surface Concept, which 
measures the transverse position and time-of-flight 
simultaneously. As a result, the complete information of 
energy and momentum is obtained without rotating the 
sample, thus removing those errors caused by the motion. 
Sample preparation usually involves Ar ion bombardment 
at around 1 keV and annealing at 600 K. LEED pattern is 
checked regularly to ensure the cleanliness of the surface.  

QUANTUM EFFICIENCY OF Cu (111) 
The first experiment on single crystal copper was 

measuring the quantum efficiency as the function of the 
incident angle. Fig. 1 shows the normalized quantum 
efficiency using p-polarized light on Cu(111) surface, 
exhibiting the well-known large enhancement [22,23] 
which can’t be explained by the 3-step model [24]. The 
fact that the enhancement increases as the photon energy 
decreases (between 5.9 eV and 5.6 eV) indicates the close 
relation between the presence of the surface state and the 
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(111) orientation and grazing incident angle, we can 
achieve an order of magnitude gain in QE and a sizable 
reduction in transverse emittance. The robustness of the 
(111) surface makes it a feasible choice for application in 
an electron gun. This is particularly the case for silver 
since it is much less reactive than copper. 
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