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Abstract 
Helmholtz-Zentrum Berlin officially started Jan. 2011 

the design and construction of the Berlin Energy 
Recovery Linac Project BERLinPro. The initial goal of 
this compact ERL is to develop the ERL accelerator 
physics and technology required to accelerate a high-
current low emittance beam. 

The conversion efficiency of an FEL is about 1% 
therefore superconducting ERL-based FEL machines look 
promising. One of the problems of superconducting ERL 
machines is the Beam Break Up (BBU) instability which 
limits the current. 

In this work the threshold current of the BBU 
instability was calculated for the BERLinPro. The 
comparison of two 100 MeV linacs based on different 
type of superconducting cavities is made. Different 
methods of BBU suppression are investigated (e.g. the 
influence of solenoid, pseudo-reflector and quadruple 
triplets in the linac structure on the BBU threshold). 

INTRODUCTION 
Nowadays Helmholz-Zentrum Berlin has a project for 

the design and construction of the Berlin Energy 
Recovery Linac Project BERLinPro. The schematic 
layout of the facility is shown in Fig. 1. The main 
parameters of the BERLinPro are shown in Table 1. 

Table 1: The Main Parameters of the BERLinPro 

Parameter Value 

Max. beam energy 100 MeV 

Average current up to 100 mA 

Nominal bunch charge 77 pC 

Max. repetition rate 1.3 GHz 

Injection energy 7 MeV 

One of the main problems of modern superconducting 
ERLs is the Beam Break Up instability. A theory of BBU 
instability in ERLs was presented in [1]. If an electron 
bunch passes through an accelerating cavity it interacts 
with dipole modes (e.g. TM110) in the cavity. First, it 
exchanges energy with the mode; second, it is deflected 
by the electro-magnetic field of the mode. After 
recirculation the deflected bunch interacts with the same 
mode in the cavity again which constitutes the feedback. 
If net energy transfer from the beam to the mode is larger 
than energy loss due to the mode damping the beam 
becomes unstable. 

Stability of the beam against BBU depends on the 
transport properties of the magnetic system expressed by 
the transport matrix elements of the magnet system. For a 
single mode in a cavity it is easy to design a one turn 
optics which makes the constituted feedback negative. 
For high energy linacs the number of cavities is large and 
a detailed simulation of the optics is necessary. So, 
calculations and optimization of the BBU threshold 
current is a task closely related to modelling and 
optimization of magnetic optics of BERLinPro. 

The threshold current for the transverse beam breakup 
may be estimated for the case of a single cavity and single 
mode as [2] 
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where p – is the beam momentum, ω – HOM frequency, 
R – the HOM impedance, m12 – the element of 
recirculation matrix, T – recirculation time, c,e – 
fundamental constants. 

Another approach [3] gives estimation for a multipass 
ERL in the form 
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where I0- Alfen current, Qa is the quality factor of HOM, 
 2= , λ is the wavelength corresponding to the 

resonant frequency of the TM110 mode, m  is the 

relativistic factor at the m-th pass through the cavity, m  

– is the Twiss parameter, Leff – is the effective length of 
the cavity. This expression shows that it is preferable to 
have low β-functions at low energies. It also indicates the 
limitation for the number of passes. 

For a long linac with many cavities the current depends 
on the mode frequency spread from cavity to cavity and 
details of the magnetic optics. Special cavity design with 
strong suppression of HOMs can be one of the ways to 
achieve higher current. 

More details on the multi-pass beam breakup in energy 
recovery linacs may be found in [2]. 

There are a number of existing software packages for 
modelling of accelerator optics and BBU. During this 
work we used the GBBU program written by E.Pozdeyev 
[2] and the Elegant particle tracking program [4].  
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