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Abstract

The small signal gain for a Two-Stream Free Electron
Laser (TSFEL) is considered using a classical approach in
a relativistic moving frame. The problem is considered
non-relativistic in this frame and SSG is derived for both
helical and planar wigglers. It is shown that in the
ponderomotive frame the results are the same as the case
of the relativistic consideration.

INTRODUCTION

Electrons in a FEL structure propagate with a
relativistic bulk velocity near to the resonant velocity of
FEL, namely, the phase velocity of the ponderomotive
wave. In the context of a frame moving with the
ponderomotive phase velocity, both longitudinal and
transverse fluctuations of electron velocity are non-
relativistic. Using a moving frame (MF) is a well-known
method in the theoretical studies of FEL [1-4]. According
to the non-relativistic nature of electron’s fluctuations in
MF, it looks relevant to deal the FEL interaction in this
moving frame quite classically. Here we have employed a
non-relativistic ~ Hamiltonian ~ approach  in  the
ponderomotive frame to drive SSG for both helical and
planar wigglers of a TSFEL. Transverse momentum is
included in the Hamiltonian of the particle by means of its
steady state value in the presence of the wiggler field.

SINGLE PARTICLE HAMILTONIAN IN
THE PONDEROMOTIVE MF

The FEL structure we are going to consider here is
composed of a helical wiggler magnetic field of
amplitude B,, and wavenumber k;, =27/ 4, and two
of density n,(i=12)
propagating along the symmetry axis of the wiggler field.
An electromagnetic(EM) wave will be amplified in this
structure under a certain resonance condition. In the

laboratory frame (LF), the vector potential of helical
wiggler field can be described as

relativistic electron beams

Alw = —AW(COS klwzléx + Sin klwzléy), (1)
where A, =B, /k;,, is the amplitude of the vector

potential. The amplified EM radiation then will be a
circularly polarized wave with the following vector
potential,

- cos[k,z, — w,t, +0(z,,t))]le, -

5141?:_5141?(21,[1) . Is<1 Is™1 ( i I)A . (2)
’ ; sinlk, z, —w,t, +0 (z,,tl)]ey

Where k;, and @) =ck; are its wavenumber and

frequency, respectively. Here we choose to work in the
Compton regime where the scalar potential of the wave
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can be neglected (i.e. op; =0). In the context of a
moving frame (MF) moving with the velocity of
ponderomotive wave, that is u,, = f,,c = k;; /(ky, + ki) ,

the FEL parameters are

A,=-4, [cos(sz +o,t)e, +sin(k,,z + a)wt)éy] , 3
coslk,z—wt+(z,t)]e, -

sin[k,z — wt +0(z,1)]e, J @

84, = 64, (z,t)[

2
where  z=y,(z;—uyt;) ., t=y,(—u,z/c”)
ky=vpky, and ky=y,(1-p,)k, are the FEL
parameters in MF, y, =(1— ﬁ;)_”z is the Lorentz

factor of MF and @,, =u,k,, . The Lorentz factor of the
particles in MF is
2
Y=, —upppme’). Q)
Since we are working in the ponderomotive MF, it will
be acceptable to suppose the electrons that are moving
with non-relativistic velocities, such that we can write the

non-relativistic Hamiltonian for a single particle of charge
e and rest mass m, as

1 — [N
H=—— ——A)".
2me(§,P1 B ) (6)

Here p is classical conjugate momentum of particles
and A = A, + 04, is the total vector potential. According
to (1) and (2), A is a fully transverse vector therefore, we
can rewrite (6) as

1 - -
H=2—me{zpi +(Qbu —SA)Z}a ™

Since Hamiltonian of the system is independent of
transverse coordinates x and y, then transverse component
of conjugate momentum, namely

Zﬁi = Zﬁi +(e/c)A, is a constant of motion, where
Ii is the transverse mechanical momentum. According
to the well known equation ZPL =—(e/c)A which

holds for the case of ¢ = 0 [3] the value of this constant
is zero and the Hamiltonian should be written as

1 e’
H:W[thc—z#]. (8)

e

Substituting (3) and (4) into (8) results
1 2 62 2
H=——- +—|4;, +2A4 04, cos(kz+ Awt + & )
2m {sz C2 [ w w s ( z )]}
)
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where and Aw=

k=k +k,
according to the fact that Ai >> 5A3 we have dropped

o, — 0, Also,

5AS2 from RHS of (9). Referring to the ponderomotive
MF, where Aw =0 and k =k /By, , we end with the

following single particle Hamiltonian
2
_ 21{2 P2+ (42 +24,64, cos(hz + 5)]} . (10)
m, C

and O(z,t) as
functions of time (corresponding to small signal gain

regime approximation), the canonical equations of motion
derive from (10) as

Supposing  04,(z,t) slow-varying

2
P, = —6—H Msm(k +9),
Oz, m,c’
i aH pzl . (11)
ale me

SMALL SIGNAL GAIN

Small signal gain of the FEL defines as the average
variation in the energy of wave to its initial energy. Since
energy exchange occurs only between the e-beam and the
wave, the variation of the wave energy is equal to the
total change in the e-beam energy. In the LF, the change
in the energy of a single electron is Ae =—Ay;m, It
A is the cross-section of the interaction region and
electrons move with an axial velocity v;, during the
interaction time 7;, then the number of electrons that
have contribution in this interaction is n,A4Av,T; .
Therefore, total change of the e-beam energy is

AE = _Z (Aylimecz)(neiAvlziT}i) : (12)

Total energy of the wave obtains from its energy density
which is

uE_gﬂ( s+ S)_47z' S ( )

The volume that wave has occupied during the interaction
time 7 is V' = AcT; . This, together with (13) gives the
following value for the total energy of wave

E = AcTik 542 (14)
4z
The radiation energy gain per pass therefore obeys
4m,, fm.c” c?
= L Ay, . 15
Z le5A2 Vii ( )
Ty d}/ ;
Here Ay, = —LIL gt 16
Vii IO < dt >WO‘ ( )

1 2 .
where <--->W0 _EJ‘O (--)dy, is average over the all

initial phases of electrons. From (5) one get to the
following equation for Ay in LF and MF
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Ayy=v,(Ay; +ubp.; I mc?). (17)

Because of the non-relativistic motion of electrons in MF
we are permitted to let Ay, = 0. Subsequently, to specify
Ay, in LF it will be enough to evaluate Ap_; in MF. The
value of Ap, can be evaluated from the equations of

motion are given in equations. (11) and (12). In order to
solve this set of linear differential equations, we use an
iteration method similar to what is used in [4]. To this end

we introduce a set of new variables as v, =kz;, g, = p,.,

x=(k/m)t and a=e* 4,04,/ c*.
Using the new variables equations (11) and (12) becomes

4, __, sin(y, + ), (18)
dx
dy,

Vi _ 19

o (19)

We now expand unknown functions via & , which is a
small parameter, and get

=§MW1 (20)

Zq(n) n (21)

asin(y, +6) = Z— o [asin(y, +6)],_,a" - (22)
0(

n= 0
Instituting these quantities into (18) and (19) we find the
perturbation equations as

dg” _ 19" .
- asin(y; +90)],_,, (23
ra " aa,,[ Wi +0)am0, (23)
dW(n) (n)
Ll =g, 24
e g (24)

with the initial conditions as l//i(")(O)=l//0,-5n’0 and

g (0)= 40:0,.0 - Integrating these equations we find for

the zero order answers

qi(o) =q,; =const., (25)
v = qux+ ¥y (26)
Using these answers in (24) and (25) gets
dq(l)
——=—sin(gy X+ ¥, +9), 27
dx
dyV
=g (28)
dx

Taking a phase average over (28) gives identically zero
as it is simply a sine function of ;. Thus, to this order
of approximation no gain occurs. In order to find the
lowest order gain, we must carry out the next step in the

approximation scheme. Using the answers of (28) and (29)
in (24) and (25) we find the relation
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q? 1 .
—_—t = X + ) — L) —
dx qgl [Sm(%zx ¢Oz) s1n(¢01) (29)

0% COS();)1c08(qo,X + #;)
When we average this over all values of y,; , we get to

<dq;2>> B
dx YVoi 2qu

——-[sin(gg;x) — go;x cos(q;x)]  (30)
Total variation for g during the total interaction time T,
to this order of approximation, is
x [ dg®
Ag =a’Ag? =a [ (Hd) dx=
ql ql '[0 dx
Vo (3 1)

[c08(g0,X) — 1+ gy Xsin(gyX)]
a2X3 2

q3 X3

0i

Substituting this into (18) and then placing the result into
(16) we get to the following expression for SSG

2p2 2 2
e"Bk, ;.
v N M F (g X /2)  (32)

522712
Sypmec kw i=l Vi

GHelical =

where a),fl. :4727161.62 /m, is the plasma frequency of e-
beam, L, =v,Tis the interaction length and F(q,X /2)
is the well known spectral function

2
0 sin(qyX/2) . (33)
0(qoX/2)|  gyX/2

For the case of a planar wiggler, which its magnetic
field can be derived from the vector potential

F(goX/2)=

A[W = _Aw sin leZley

(34)

we follow the guide line for the helical wiggler to get to
the following Hamiltonian for the single particles

2| Asin(k.z+ w. t) +
H — 1 z Zzl +i2 w ( w W )
2m, | 42 sin’ (k,z — ot + 5)

— 4,04 (cos(Akz + wt — 8) — cos(kz + Aot + 5) )|}
Where Ak =k, —k,and 0 = o, + @.

In the context of ponderomotive frame, only time
dependency rise from w, and @ that both are high
frequencies causing fast time variation of Hamiltonian. So,

if we take a time average over total interaction time T, it
gets a simplified form as

(35)

2
H= Z:n{z ph+ % [Aj, +24,04,(z,t) cos(kz + 5)]} (36)

This expression differs from its helical wiggler
counterpart by a factor of 1/2 in the contribution of vector
potentials. Accordingly, the corresponding SSG will
differ by a factor of 1/2 that is

2p2 2 2
e Bk, W
weh Y (g X 12). (37)

Planar — 5 2 242
167/pmec kw i=1 Vi
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Now, we are going to find the resonant wavenumber
corresponding to the maximum gain. For this, we refer to
the spectral function (32), which has an absolute

maximum at g, X =#-2.6. To find this point in the LF
we notice first that the ponderomotive phase ¥ is a
quantity which is independent of the working frame.
Therefore, we can replace y with its LF value
v, =k;z; —it; in (19). Doing so, and applying the
chain differentiating rule one find

qX:dV/IX: dl//zﬁ_’_dl//l% X = (38)

dx dz, dx dt, dx

up[klw _k/s(l - ﬂp)]I;
Finally, the resonance wavenumber can be evaluated,
under the assumption u, =v,, and 1+ [, ~2 for a

relativistic beam, as

2.6
ki =~ 2y0. k| 1+
Isi }/Ozz lw( leLl ]

which is the well-kn own FEL resonance wavenumber
corresponding to the i'th electron beam. Although the
resonance wavelengths of two beams are different, for the
case of a small distinction between two electron beam
energies, it is easy to show that

A—/l ~ ﬂ <<1,
A ]/3

w

(39)

(40)

which is small enough for two wavelengths to be
approximated as one wavelength.

CONCLUTIONS

We have calculated the small signal gain of a two-
streem FEL for both helical and planar wigglers

through a non-relativistic — approach in the
ponderomotive frame. The effect of transverse
momentum of electrons is incorporated in the

calculations by means of its steady state value in the
presence of the wiggler field. Resulting expression for
the gain shows that the total FEL gain in this situation
is simply the sum of two conventional expressions for
SSG for each electron beam, separately.
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