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Abstract 
The small signal gain for a Two-Stream Free Electron 

Laser (TSFEL) is considered using a classical approach in 
a relativistic moving frame. The problem is considered 
non-relativistic in this frame and SSG is derived for both 
helical and planar wigglers. It is shown that in the 
ponderomotive frame the results are the same as the case 
of the relativistic consideration. 

INTRODUCTION 
Electrons in a FEL structure propagate with a 

relativistic bulk velocity near to the resonant velocity of 
FEL, namely, the phase velocity of the ponderomotive 
wave. In the context of a frame moving with the 
ponderomotive phase velocity, both longitudinal and 
transverse fluctuations of electron velocity are non-
relativistic. Using a moving frame (MF) is a well-known 
method in the theoretical studies of FEL [1-4]. According 
to the non-relativistic nature of electron’s fluctuations in 
MF, it looks relevant to deal the FEL interaction in this 
moving frame quite classically. Here we have employed a 
non-relativistic Hamiltonian approach in the 
ponderomotive frame to drive SSG for both helical and 
planar wigglers of a TSFEL. Transverse momentum is 
included in the Hamiltonian of the particle by means of its 
steady state value in the presence of the wiggler field. 

SINGLE PARTICLE HAMILTONIAN IN 
THE PONDEROMOTIVE MF  

The FEL structure we are going to consider here is 
composed of a helical wiggler magnetic field of 
amplitude wB  and wavenumber lwlwk  /2  and two 

relativistic electron beams of density )2,1( inei  

propagating along the symmetry axis of the wiggler field. 
An electromagnetic(EM) wave will be amplified in this 
structure under a certain resonance condition. In the 
laboratory frame (LF), the vector potential of helical 
wiggler field can be described as 

 yllwxllwwlw ezkezkAA ˆsinˆcos 
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where lwww kBA /  is the amplitude of the vector 

potential. The amplified EM radiation then will be a 
circularly polarized wave with the following vector 
potential, 
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Where lsk  and lsls ck  are its wavenumber and 

frequency, respectively. Here we choose to work in the 
Compton regime where the scalar potential of the wave 

can be neglected (i.e. 0l ). In the context of a 

moving frame (MF) moving with the velocity of 
ponderomotive wave, that is )/( lslwlspp kkkcu   , 

the FEL parameters are 
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where )( lplp tuzz   , )/( 2czutt lplp   , 

lwpw kk   and lspps kk )1(    are the FEL 

parameters in MF, 2/12 )1(  pp   is the Lorentz 

factor of MF and wpw ku . The Lorentz factor of the 

particles in MF is 

)/( 2cmpu elzplp   .             (5) 

Since we are working in the ponderomotive MF, it will 
be acceptable to suppose the electrons that are moving 
with non-relativistic velocities, such that we can write the 
non-relativistic Hamiltonian for a single particle of charge 
e  and rest mass em  as 
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Here p


 is classical conjugate momentum of particles 
and sw AAA


  is the total vector potential. According 

to (1) and (2), A


 is a fully transverse vector therefore, we 
can rewrite (6) as 
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Since Hamiltonian of the system is independent of 
transverse coordinates x and y, then transverse component 
of conjugate momentum, namely

AcePp


)/(  , is a constant of motion, where 

P


 is the transverse mechanical  momentum.  According 

 to the well known equation AceP


)/(     which 

 holds for the case of 0  [3] the value of this constant 
is zero and the Hamiltonian should be written as 









  2

2

2
2

2

1
A

c

e
p

m
H z

e

.                     (8) 

Substituting (3) and (4) into (8) results 
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where sw kkk   and sw   . Also, 

according to the fact that 
22
sw AA   we have dropped 

2
sA  from RHS of (9). Referring to the ponderomotive 

MF, where 0  and plskk / , we end with the 

following single particle Hamiltonian 
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Supposing ),( tzAs  and ),( tz as slow-varying 

functions of time (corresponding to small signal gain 
regime approximation), the canonical equations of motion 
derive from (10) as 
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 SMALL SIGNAL GAIN  
 Small signal gain of the FEL defines as the average 

variation in the energy of wave to its initial energy. Since 
energy exchange occurs only between the e-beam and the 
wave, the variation of the wave energy is equal to the 
total change in the e-beam energy. In the LF, the change 
in the energy of a single electron is 2cmel  . If 
A is the cross-section of the interaction region and 
electrons move with an axial velocity lzv during the 
interaction time lT , then the number of electrons that 
have contribution in this interaction is llze TAvn . 
Therefore, total change of the e-beam energy is 

  ))(( 2
lilzieieli TAvncmE  .              (12) 

Total energy of the wave obtains from its energy density 
which is 
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The volume that wave has occupied during the interaction 
time lT  is lAcTV  . This, together with (13) gives the 

following value for the total energy of wave  
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The radiation energy gain per pass therefore obeys 
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d  is average over the all 

initial phases of electrons. From (5) one get to the 
following equation for   in LF and MF 

)/( 2cmpu eziipli   .             (17) 

Because of the non-relativistic motion of electrons in MF 
we are permitted to let 0 i . Subsequently, to specify 

li  in LF it will be enough to evaluate zip  in MF. The 

value of zp  can be evaluated from the equations of 

motion are given in equations. (11) and (12). In order to 
solve this set of linear differential equations, we use an 
iteration method similar to what is used in [4]. To this end 
we introduce a set of new variables as ii kz , izi pq  , 

tmkx e )/(  and 22 / cAAe sw  . 

Using the new variables equations (11) and (12) becomes 
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We now expand unknown functions via  , which is a 
small parameter, and get 
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Instituting these quantities into (18) and (19) we find the 
perturbation equations as 
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with the initial conditions as 0,0
)( )0( ni

n
i   and 

0,0
)( )0( ni

n
i qq  . Integrating these equations we find for 

the zero order answers  
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iii xq 00
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Using these answers in (24) and (25) gets 
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Taking a phase average over (28) gives identically zero 
as it is simply a sine function of i0 . Thus, to this order 

of approximation no gain occurs. In order to find the 
lowest order gain, we must carry out the next step in the 
approximation scheme. Using the answers of (28) and (29) 
in (24) and (25) we find the relation 
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When we average this over all values of i0 , we get to 
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Total variation for q  during the total interaction time T, 

to this order of approximation, is 
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Substituting this into (18) and then placing the result into 
(16) we get to the following expression for SSG 
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where eeibi men /4 22    is the plasma frequency of e-

beam, llzl TvL  is the interaction length and )2/( 0 XqF  

is the well known spectral function 
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For the case of a planar wiggler, which its magnetic 
field can be derived from the vector potential 
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               (34) 

we follow the guide line for the helical wiggler to get to 
the following Hamiltonian for the single particles 

 )cos()cos(

)(sin

)(sin

2

1
22

22

2

2
2
























 

tkztkzAA

tzkA

tzkA

c

e
p

m
H

sw

sss

www
zi

e
     (35) 

Where sw kkk  and sw   . 

In the context of ponderomotive frame, only time 
dependency rise from s and   that both are high 
frequencies causing fast time variation of Hamiltonian. So, 
if we take a time average over total interaction time T, it 
gets a simplified form as 
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This expression differs from its helical wiggler 
counterpart by a factor of 1/2 in the contribution of vector 
potentials. Accordingly, the corresponding SSG will 
differ by a factor of 1/2 that is 
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Now, we are going to find the resonant wavenumber 
corresponding to the maximum gain. For this, we refer to 
the spectral function (32), which has an absolute 
maximum at 6.20 Xq i . To find this point in the LF 

we notice first that the ponderomotive phase  is a 

quantity which is independent of the working frame. 
Therefore, we can replace  with its LF value 

llslll tzk   in (19). Doing so, and applying the 

chain differentiating rule one find 
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Finally, the resonance wavenumber can be evaluated, 
under the assumption zp vu 0  and 21 0  z  for a 

relativistic beam, as 
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which is the well-kn own FEL resonance wavenumber 
corresponding to the i'th electron beam. Although the 
resonance wavelengths of two beams are different, for the 
case of a small distinction between two electron beam 
energies, it is easy to show that 
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which is small enough for two wavelengths to be 
approximated as one wavelength.  

CONCLUTIONS 
 We have calculated the small signal gain of a two-

stream FEL for both helical and planar wigglers 
through a non-relativistic approach in the 
ponderomotive frame. The effect of transverse 
momentum of electrons is incorporated in the 
calculations by means of its steady state value in the 
presence of the wiggler field. Resulting expression for 
the gain shows that the total FEL gain in this situation 
is simply the sum of two conventional expressions for 
SSG for each electron beam, separately. 
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