

Pulse-Splitting in Seeded Free Electron Lasers

M. Labat, N. Joly, S. Bielawski, C. Szwaj, C. Bruni, M.E. Couprie

1008-FEL'10

Principle of an FEL

• Amplifier medium:

- Relativistic e- @ E ≈ MeV-GeV
 from accelerator (storage ring or LINAC)
- Periodic magnetic field

generated in an undulator

Principle of an FEL

• Optical radiation:

Spontaneous emission:
 Synchrotron radiation

Advantages of seeded FELs

• **Injection of a coherent seed** enables:

- Reduction of the saturation length
- Higher temporal coherence
- Higher shot to shot stability
- Shorter and controlled pulse duration
- Stronger nonlinear harmonic generation
- More efficient cascading configurations

• Seed sources:

- Conventional lasers: $\lambda > 250$ nm
- High order Harmonics Generated in gas (HHG): $270 > \lambda > 1$ nm

D. Garzella et al., NIMA 528, 502 (2004). M.E. Couprie et al., NIMA 528, 507 (2004).

HHG + HGHG : Coherent compact FELs at very short wavelengths

L.H. Yu, Phys. Rev. A 44 (1991).

Seeded FELs around the world

Seeded FELs around the world

Introduction

http://arcenciel.synchrotron.fr/ArcEnCiel

The ARC-EN-CIEL project

Light sources

• 4th generation light source:

- Synchrotron radiation from undulators (IR to X-rays):

U20 and U30 (planar + helical)

– 4 Free Electron Lasers:

3 seeded HGHG ($\lambda \rightarrow 0.3 \text{ nm}$) + 1 oscillator (VUV)

http://www.perseo.enea.it

...!!

http://www.esrf.eu/Accelerators/Groups/InsertionDevices/Software/SRW

Parameters for AEC – FEL1

- Electron beam:
 - E=220 MeV, I=300A, σ_z =450 fs-rms, ϵ =1.2. π .mm.mrad
- Seed:
 - 114 nm
 - 200 kW in 150 fs-fwhm
- Undulators:
 - Modulator: 100 periods of 26 mm
 - Dispersive section: R_{56} =1.5 µm
 - Radiator: 260 periods of 30 mm
- Final wavelength = 114 nm

Simulation of a VUV seeded FEL Performances of AEC – FEL1

Peak power evolution in the:

Simulation of a VUV seeded FEL « Performances » of AEC – FEL1

Parameters of AEC – FEL2

- Electron beam:
 - E=1 GeV, I=1500A, σ_z =200 fs-rms, ϵ =1.2. π .mm.mrad
- Seed:
 - 8.9 nm
 - 30 kW in 50 fs-fwhm
- Undulators:
 - Modulator: 200 periods of 26 mm
 - Dispersive section: R_{56} =1.5 µm
 - Radiator: 500 periods of 15 mm
- Final wavelength = 8.9 nm

Vs synchronization

1 GeV e- beam. Seed: 300 kW @ 8.9 nm. 200xU26 - R₅₆ - 500xU26.

Vs synchronization

1 GeV e- beam. Seed: 300 kW @ 8.9 nm. 200xU26 - R₅₆ - 500xU26.

Pulse splitting *follows the gain medium*

Vs pulse duration

1 GeV e- beam. Seed: 50 kW @ 14 nm. 700xU26.

Vs pulse duration

1 GeV e- beam. Seed: 50 kW @ 14 nm. 700xU26.

Pulse splitting occurrence depends in seed duration

Vs power

1 GeV e- beam. Seed @ 8.9 nm. 200xU26 - R₅₆ - 500xU26

Vs power

Pulse splitting occurrence does not depend in power

Pulse splitting in seeded FELs

Intermediate conclusion

- Simulation of VUV and XUV seeded FELS (ARC-EN-CIEL):
 → Observation of a pulse splitting
- Study of the double pulse behavior:
 - Related to local overbunching / follows gain medium
 - Related to seed pulse duration
 - Not due to excessive seeding power

 \rightarrow Requires a better understanding

Start over from FEL fundamental equations

The 1-D Colson-Bonifacio model

W.B. Colson, Phys. Lett. A 59 (1976) B. Bonifacio et al., PRA 40 (1989)

The 1-D Colson-Bonifacio model

• Modeling of the e- beam:

- N_e particles in the phase space (Φ ,p):
 - Φ_i : relative phase
 - p_i: relative normalized energy
- Particles distribution:
 - Φ_i : uniform distribution within [- π ; π]
 - p_i : normal distribution centred at 0 with standard deviation σ_v .

The 1-D Colson-Bonifacio model

• Modeling of the e- beam:

- $-N_e$ particles in the phase space (Φ ,p)
- Particles distribution

• Modeling of the radiation:

- Radiation potentiel vector A(z,t)
- Dimensionless coordinates:
 - z: along the undulator in slippage length units
 - t: along the electron bunch in cooperation length units

The 1-D Colson-Bonifacio model

W.B. Colson, Phys. Lett. A 59 (1976) B. Bonifacio et al., PRA 40 (1989)

• FEL equations:

$$\begin{aligned} \frac{\partial \phi_j}{\partial z} &= p_j \\ \frac{\partial p_j}{\partial z} &= -\left[A(z,t) \ e^{i\phi_j} + c.c.\right] \end{aligned}$$
 Evolution of the particles in the phase space (Φ_j, p_j) $(\frac{\partial}{\partial z} + \frac{\partial}{\partial t}) \ A(z,t) &= \chi(t) \ b(z,t) \end{aligned}$ Propagation of the field A in the electronic medium

The 1-D Colson-Bonifacio model

W.B. Colson, Phys. Lett. A 59 (1976) B. Bonifacio et al., PRA 40 (1989)

• FEL equations:

$$\begin{array}{l} \frac{\partial \phi_{j}}{\partial z} = p_{j} \\ \\ \frac{\partial p_{j}}{\partial z} = -\left[A(z,t) \ e^{i\phi_{j}} + c.c.\right] \end{array} \end{array} \begin{array}{l} \text{Evolution of the particles} \\ \text{in the phase space} \\ (\Phi_{j}, p_{j}) \end{array} \\ \\ \left(\frac{\partial}{\partial z} + \frac{\partial}{\partial t}\right) A(z,t) = \boxed{\chi(t) \ b(z,t)} \end{array} \end{array} \end{array} \end{array}$$

The 1-D Colson-Bonifacio model

W.B. Colson, Phys. Lett. A 59 (1976) B. Bonifacio et al., PRA 40 (1989)

• FEL equations:

Numerical tool

N. Joly

- Integration of the FEL equations:
 - Description of the particles dynamics
 - Description of the evolution of the radiation pulse
 - Analysis of the spatio-temporal regimes of the seeded FEL with dimensionless parameters

A few dimensionless parameters

B. Bonifacio et al., PRA 40 (1989)

• « Slippage parameter »:

$$S_e = \frac{\text{slippage length}}{e - \text{bunch length}}$$

• « Superradiant parameter »:

$$K = \frac{\text{cooperation length}}{\text{e- bunch length}}$$

Analysis of the spatiotemporal regimes New tools for seeded FELs

• Radiation potentiel vector:

$$A(z=0,t) = A_0 \Rightarrow A(z=0,t) = A_0 e^{-\frac{1}{2}(\frac{t}{\sigma_t})^2}$$
 shot noise seed

• Additional dimensionless « seed » parameter:

$$S_{seed} = \frac{\text{slippage length}}{\text{seed pulse length}}$$

Analysis of the spatiotemporal regimes « Initial » regimes

B. Bonifacio et al., PRA 40 (1989)

« Initial » regimes

B. Bonifacio et al., PRA 40 (1989)

« Initial » regimes

« Initial » regimes

Today designs for $S \leq 1$

LCLS: S~0.01 EXFEL: S~0.02 FERMI: S~0.1 SPARC: S~0.07

Analysis of the spatiotemporal regimes The steady-state FEL

- Condition for occurrence:
 - S ≤1 and 1>S>K
 (small slippage)
- Properties:
 - (1) Lethargy
 - (2) Exponential growth
 - (3) Saturation
 - (4) Power oscillations

The strong superradiance

100

intensity (arb. un.)

R. Bonifacio et al., PRA 40 (1989).

Condition for occurrence:
 1 ~ S >> K

(strong slippage)

- Properties:
 - (1) Lethargy
 - (2) Exponential growth
 - (3) No saturation

- (4) ...

$$\begin{array}{c} P \propto z^2 \\ \sigma_z \propto z^{-1/2} \end{array}$$

The strong superradiance

T. Watanabe, PRL 98 (2007).

• Demonstration @ NSLS in 2007:

The new regime

The new regime

Analysis of the spatiotemporal regimes The pulse splitting

M. Labat et al., PRL 103 (2009)

S_e=0.25, K=0.025, S_{seed}=2

Output power

Local gain \rightarrow Local saturation \rightarrow Progressive saturation along the pulse

Pulse splitting

Approximative splitting equation

Approximative splitting equation

Approximative splitting equation

- For S_e<1 and S_{seed}~1: $\left(\frac{\partial}{\partial z} + \frac{\partial}{\partial t}\right) A(z,t) \approx \frac{\partial}{\partial z} A(z,t)$
- Solution of FEL equations: $|A|^2(z,t)\approx \tfrac{1}{9}exp[\sqrt{3}z]|A|^2(z=0,t)$
 - At saturation:

 $|A|^2(z_{sat},t) \cong O(1) \cong 1.4$

B. Bonifacio et al., NIMA239 (1985)

Approximative splitting equation

Next step

Can we observe a pulse splitting on an existing seeded FEL ??

Pulse splitting in seeded FELs Conclusion

- Simulation of VUV and XUV seeded FELS (ARC-EN-CIEL):
 → Observation of a pulse splitting
- Studies under PERSEO:

 \rightarrow Rough understanding

• Integration of FEL equations:

 \rightarrow Observation of a pulse splitted regime

- Analysis of dimensionless parameters:
 - \rightarrow Definition of the regime conditions of occurrence
 - \rightarrow Better understanding of the phenomenon

Let's make experiment....