

Harmonic Measurements at LCLS

D. Ratner

A. Brachmann, F.J. Decker, Y. Ding, D. Dowell, P. Emma, J. Frisch, Z. Huang,
R. Iverson, J. Krzywinski, H. Loos, M. Messerschmidt, H.D. Nuhn, T. Smith,
J. Turner, J. Welch, W. White, J. Wu, (SLAC, Menlo Park, California)
R. Bionta (LLNL, Livermore, California)

Harmonic Content at LCLS

- Measure harmonics at normal operation
 H.D. Nuhn will discuss amplification
- Third Harmonic
 - Strongest harmonic
 - Potential source of harder X-rays
- Second Harmonic
 - Background noise for users

- Third harmonic content
- Block fundamental
 - ➤ Gas (N₂) or solid (10um-30mm Be)
 - Measure counts on 100um YAG

X-ray Diagnostics (J. Welch, FROA1)

Simplest harmonic measurement:
 Take ratio of counts from two images
 900 eV fund: 1.7% 3rd Harmonic
 1.7 keV fund: 2.7% 3rd Harmonic

Fundamental

3rd Harmonic

Third Harmonic

Third Harmonic

Third Harmonic

Confirm 3rd Harmonic measurement at 6 keV Zirconium K-edge Confirms wavelength and intensity

What is 2nd harmonic content in FEL?
 What is 2nd harmonic content in beamline?
 Measure transmission cutoff

Soft X-ray beamline transmission

Cutoff near 2.2 keV

http://henke.lbl.gov/optical_constants/

- □ FEL is mostly 1st and 3rd harmonics
- □ Need to isolate 2nd harmonic:
 - Block fundamental with solid and gas attenuators
 - > 3rd harmonic and higher absorbed in mirrors
 - Measure 2nd harmonic on P3S

Less Second Harmonic Distribution SLAC

Second harmonic image:

2.7 kev 3rd harmonic above cutoff

Image on P3S, 900eV fund 0.4 mil Be + 5.5 torr atten

Single Particle Second Harmonic Distribution

K.J. Kim, USPAS

Less Scan Gas Attenuator N₂ Pressure

□ Harmonics scale differently with attenuation Counts $\propto T_{1st} \times M_{1st}^3 + T_{2nd} \times M_{2nd}^3 \times (P_{2nd}/P_{1st})$

T=Transmission from attenuators, M = Mirror transmission

- Second harmonic weaker than third harmonic
 Bunching stronger at second harmonic, but...
 Planar undulators only couple odd harmonics on axis
 Second Harmonic After Burners (SHABs)
 Final undulators are tuned to second harmonic
 - H.D. Nuhn will discuss Thursday, 16:00, THOCI2

□ Summary of results:

Approximately 0.5-3% 3rd Harmonic
 Proportion depends on FEL fundamental

performance

	2 nd Harmonic	3 rd Harmonic
900 eV	0.06%	2%
1 keV	0.05%	NA
1.7 keV	NA	3%
6 keV	NA	0.6%
8 keV	NA	2%
		\checkmark

- □ Summary of results:
 - Approximately 0.05% 2nd Harmonic
 High energy will be measured soon

Thanks to:

LCLS project director J. Galayda, Commissioning Team and many collaborators and visitors from LBNL, LLNL, DESY