The 32nd International Free Electron Laser Conference Malmo, Sweden, Aug 23-27, 2010

A comparison study of high harmonic characterization in EEHG operation of SDUV-FEL

Haixiao Deng, for SDUV-FEL physics group

Shanghai Institute of Applied Physics 2010-08-24

Contents

Introduction & Motivation

Comparison analysis of high harmonic characterization

- Coherent Transition Radiation (CTR)
- Coherent Synchrotron Radiation (CSR)
- Coherent Uudulator Radiation (CUR)
- Proposed Measurement & Status
- Summary

Introduction & Motivation

- Seeded FEL .vs. SASE
- Echo enabled harmonic generation (EEHG)
- EEHG commissioning at SINAP
- EEHG commissioning in SLAC

SINAP EEHG setup

SDUV-FEL is a test facility for seeded FEL

- Originally designed for HGHG
- ♦ After modifications, well suited for double-modulator FEL test

SINAP EEHG results

HGHG .vs. EEHG .vs. Other schemes

- EEHG observed in SINAP & SLAC are both low harmonics.
- Low harmonics, HGHG & EEHG have an even similar performance.
- High harmonics, EEHG shows its unique status. Need demonstration.

Yan Jun et al., Proceedings of FEL2009, Liverpool, UK. 406~409

Comparison analysis of high harmonics

- Beam parameters
 - 135MeV, 200pC, 100A (Compressed)
 - 200um, 10mm-mrad
 - 30keV energy spread
- Chicanes
 - 1st R56 = 5.500mm
 - 2th R56= 0.523mm
- Main undulator
 - 25mm period, 1.5m length per segment, K=1.4

EEHG phase space & modulation frequency

How to character the bunched beam

- **Free Electron Laser process: further amplification to saturation**
- Coherent radiations: rigid beam, fixed bunching
 - Coherent Transition Radiation (CTR)
 - Coherent Synchrotron Radiation (CSR)
 - Coherent Uudulator Radiation (CUR)

In the case of no suitable undulator

$$P(\omega) = kb^2(\omega)$$

$$b(\omega) = < e^{-i\omega t_j} >$$

- Aluminum foil
- Dipole
- Undulator *
- * Deng haixiao, Chinese Physics C, **34** (2010) 1649-1605

1. Coherent Transition Radiation

2. Coherent Synchrotron Radiation

Beam dynamics

$$\frac{d\gamma_{j}}{dt} = ev_{j} \times B \cdot v_{j} = 0$$

$$\frac{d}{dt} \left(\frac{mv_{x}}{\gamma_{j}}\right) = e(v_{y}B_{z} - v_{z}B_{y})$$

$$\frac{d}{dt} \left(\frac{mv_{y}}{\gamma_{j}}\right) = e(v_{z}B_{x} - v_{x}B_{z})$$

$$\frac{d}{dt} \left(\frac{mv_{z}}{\gamma_{j}}\right) = e(v_{x}B_{y} - v_{y}B_{x})$$

CSR calculation

$$E_{j}(t') = \frac{e}{4\pi\varepsilon_{0}c^{2}r} \frac{\vec{n} \times [(\vec{n} - \frac{\vec{v}}{c}) \times \vec{v}']}{(1 - \frac{\vec{v} \cdot \vec{n}}{c})^{3}}$$
$$E(t) = \sum_{j} E_{j}(t'_{j})$$

2. Coherent Synchrotron Radiation

Parseval's theorem

$$\int P(t)dt = \frac{1}{2\pi} \int P(\omega)d\omega$$

EEHG signal from CSR: 85pJ

3. Coherent Undulator Radiation

3. Coherent Undulator Radiation

	The 3rd harmonic	The 9th harmonic	
Theory	9 nJ	120 nJ	
Simulation	8 nJ	64 nJ	

Possible Reasons for difference

- **bunching variation**
- Transverse effects
 - Numerical errors

A short comparison

	Radiation source	EEHG wavelength	EEHG energy	Noises region	Noise energy	SNR
CTR	Aluminum	VUV	~ 19fJ	THz	~ 100uJ	×10 ⁻¹⁰
	foil	116.3 nm		IR	~ 20pJ	×10 ⁻³
CSR	Dipole in	VUV	~ 85pJ	THz	~ 10uJ	×10 ⁻⁷
	Chicanes	116.3 nm		IR	~ 80nJ	×10 ⁻³
CUR	SDUV	VUV	~ 64nJ	UV~VIS	~ 8nJ	× 10 ⁺¹
	radiator	116.3 nm		SE	~ 5nJ	× 10 ⁺¹
FEL	A suitable	VUV	~ 48uJ	SE	~ 35nJ	×10 ⁺³
	undulator	116.3 nm				

* CTR, SE & FEL results are from brief theoretical estimation

** CSR & CUR results are from simulations

*** First approximation, and transport efficiency of different radiation not included

Proposed Measurement & Status

Proposed Measurement & Status

Summary

- EEHG test has been carried out in SDUV-FEL at SINAP. So far, the experimental results agree well with theoretical predictions.
- Higher harmonic microbunching measurement with EEHG technique is of great interest and under way in SDUV-FEL.
- In comparison with the CTR & the CSR-based method, the CUR shows extremely strong radiation energy and high SNR, which is very helpful in improving the resolution and sensitivity of the diagnoses.

Acknowledgement:

- Z. T. Zhao, Z. M. Dai, D. Wang, Q. Gu, B. Liu, G. Q. Lin, D. G. Li
- C. Feng, J. Yan, T. Zhang, M. Zhang, J. H. Chen
- X. T. Wang, T. H. Lan, Y. Z. Chen, K. R. Ye
- Q. K. Jia from USTC, W. X. Liu from Tsinghua University

Thank you for your attention 前射射!

ll ji

How for the 10th, 11th, 13th harmonic etc?

- Since the radiator is the 3rd, 4th or 5th harmonic of the seed laser, here we can only characterize the 9th, 12th and 15th harmonic of the seed laser?
- No, it is not the story.
- **EEHG** bunches electron beam on arbitrary harmonic of the seed laser, and just adjust the radiator resonant frequency to 1/3 or 1/5 of the interested harmonic.
 - Harmonic operation technique *
 - Suppression of the fundamental of the radiator radiation
 - A case: the 1st harmonic of the radiator is 11/3-th harmonic of the seed laser, then, the 3rd harmonic of the radiator is the 11th harmonic of the seed laser.

* Deng haixiao et al., FEL proceeding of 2008, Geyongju, Korea