USE OF MULTIPASS RECIRCULATION AND ENERGY RECOVERY IN CW SRF X-FEL DRIVER ACCELERATORS*

W. Akers, S. Benson, G. Biallas, K. Blackburn, J. Boyce, B. Bullard, J. Coleman, C. Dickover, D. Douglas, F. Ellingsworth, S. Fisk, P. Evtushenko, C. Gould, J. Gubeli, F. Hannon, D. Hardy, C. Hernandez-Garcia, K. Jordan, M. Klopf, J. Kortze, R. Legg, R. Li, G. Neil, M. Marchlik, W. Moore, T. Powers, D. Sexton, I. Shin, M. Shinn, C. Tennant, B. Terzic, R. Walker, G. Williams, G. Wilson, and S. Zhang

> Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, U.S.A.

* support by the US Department of Energy under contract number DE-AC05-060R23177.

- Source -> preaccelerator ->
 1st stage of (chicane) compression -> 1st stage acceleration ->
 2nd stage of (chicane) compression -> acceleration to full
 energy -> FEL(s) -> dump drive beam
- Linac => bright beam..., but high cost (accelerator, cryo (assume SRF), RF drive) chicane compressors => curvature compensation via harmonic RF => higher cost

Recirculated/Energy Recovered FEL

- Source -> linac (via merger, serves as preaccelerator) 1st recirculation (serves as 1st bunch compressor) -> Reinject for 2nd pass through linac -> 2nd recirculation (serves as 2nd bunch compressor) -> Reinject for 3rd pass -> Transport to multiple FELs, lase ->
 - Energy recover beam(s) (if cost effective [high beam powers])

Rationale for Recirculation and Energy Recovery

- Recirculation
 - Reduce linac length/single-pass energy gain => cost control
 - SRF, cryo costs high/beam transport costs low
 - Could save 100s M\$ in cost of large system
 - Provide handles on phase space
 - Can provide intermediate stages of bunch compression & curvature correction
 - Betatron matching
 - Alters machine footprint (reduce length/increase width)
 - Aids/abets synchronization
- Energy Recovery
 - Reduce required RF power => cost control
 - Limit radiation losses (dump low energy beam)

Rationale for Recirculation and Energy Recovery

Key Issues for Successful Implementation of Multipass Recirculation

- Appropriate phase space management =>
 - Longitudinal matching cycle
 - Transverse control (betatron matching)
 - Must be observant of collective effects and lattice sensitivities...
- Preservation of beam quality during (protracted) acceleration, beam handling, energy recovery cycles

Schematic Longitudinal Match for ERL-Driven FEL

Important Features:

- Energy transient when FEL turns off/on => phase transient at reinjection
 => transient beam loading
- Must provide adequate RF power to manage these transients
- No energy transients at dump when system properly tuned
- Properly designed system can readily manage nonlinear effects:
 - Sextupoles compensate RF curvature, octupoles manage torsion...

Nonlinearity Control Validated By Measurement

Figure 1: Inner sextupoles to 12726 g-cm and trim quads to -215 g

Figure 2: trim quads at -185 g with same sextupoles

Figure 3: trim quads at -245 g

Figure 4: quads at -215, but sextupoles 3000 g below design, at 10726 g-cm Figure 5: where we left it: trim quads -215 g sextupoles at 12726 g-cm

JLab IR Demo Dump

core of beam off center, even though BLMs showed edges were centered (high energy tail)

Extrapolation to Multi-pass System: Implementation of Multistage Compression

- Multi-pass linac naturally suited for multi-stage compression
 - Use recirculator compactions (M_{56} , T_{566} , W_{5666} ...) to rotate and correct distortions in phase space
- Provides operational freedom in
 - choice of acceleration phase
 - bunch aspect ratio after compression
 - Tolerance of variable (longer) injected bunch (space charge mitigation)
- Avoids use of harmonic RF
 - additional cost
 - aperture constraints
 - Impedance burden
 - acceptance limitations (spatial, and in RF phase during energy recovery when phase extent of beam can be large (~30° at RF fundamental, 90° at 3rd harmonic)

Comparison: Single/Multistage Compression

injected linac compressor beam

Multistage

injected linac1stlinac2ndbeamcompressorcomp.

Beam Dynamics Issues – see ERL 2009!

- space charge
- BBU
- other wakes/impedances
 - linac, vacuum chamber, diagnostic impedences
 - MicrowaveStudio modeling of all components
 - impedance budget, policy, enforcement (impedence policing)
 - resistive wall
- vacuum effects
 - lons
 - gas scattering
- intrabeam scattering
 - IBS
 - Touschek
- halo
 - Formation
 - gas scattering
 - beam formation processes
- CSR
 - CSR basic ("elegant")
 - 3-d modeling
 - microbunching instabilities

- ISR
 - emittance, $\delta p/p...$
- Error analysis
 - Alignment
 - Magnets, cavities, diagnostics
 - Powering
 - Excitation, ripple, reproducibility
 - field tolerance
 - Homogeniety, calibration
 - timing & synchronism
 - phase & gradient
 - diagnostic errors
- RF drive
 - transient analysis
- Operational simulations
 - threading, orbit correction
 - emittance measurement
 - lattice function tuning
 - longitudinal matching
 - phase transfer function
 - bunch length compression tuning
 - energy compression tuning

Example System: JLAMP

Notional upgrade of existing JLab CW UV FEL to an amplifier-based VUV/Soft X-Ray facility

<u>Requirements</u>

- Generate, accelerate, and deliver properly configured drive beam to FEL
 - 1 mm-mrad x 50 keV-psec x 200 pC
 - $I_{peak} \sim 1 \text{ kA} (200 \text{ fsec FWHM x } 0.1\% \delta p/p)$
- Recover (degraded) exhaust beam
- Preserve beam quality, manage losses, avoid instabilities, etc etc
- Fit in vault (an *upgrade*)
- Cost < 100 M\$

Design Parameters*

	2010	2012
Bunch charge (pC)	135	200
Bunch rep. rate (MHz)	75	4.68
Average current, max (mA)	10	1
Norm. transverse emittance at FEL (µm)	10	1
Longitudinal emittance at FEL (keV ps)	60	50
Energy spread at FEL (% rms)	0.4	0.1
Bunch length at FEL, rms (fs)	150	83
Bunch energy (MeV)	100	600

*F. Hannon et al., IPAC2010

Driver Concept

Analysis: Longitudinal Match, Space Charge, CSR

Initially obvious concerns:

- CW Source/Injector Performance
- Phase space management scenario
- Beam quality preservation during
 - Acceleration (space charge)
 - Recirculation (CSR)

Source/Injector

- Initial challenge: generate LCLS-class beam, but CW (with lower gradients...)
- Studying various cathode materials, gun options
 - LBL NCRF, JLab DC inverted, U.W. SRF
- Exploring subharmonic (~750 MHz) injector designs with type/spacing of RF cavities tailored to specifics of gun
- Initial results encouraging

- "other wrong match" => no space charge effects (good emittance), but lattice functions diverge
- Must negotiate between space-charge-driven emittance degradation & lattice sensitivity to instabilities (BBU) and error effects

Recirculator Design

- principle design driver: beam quality preservation
 - Manage aberrations
 - 2nd order achromat (w/ M₅₆, T₅₆₆,... control)
 - Configure system to avoid ISR
 - bend radii, lattice functions
 - mitigate CSR
 - Avoid parasitic compressions,
 - single stage of compression
 - abrupt final compression,
- Initial results (300 MeV recirculator) promising
 - ISR not significant
 - CSR
 - 1st pass emittance well conserved ($\Delta \epsilon_{trans} \sim 0.1 \text{ mm-mrad}$)
 - Some evidence of microbunching; analysis in progress

lator) promising

d (∆ε_{trans} ~ 0.1 mm-mrad) g; analysis in progress

ator) promising

d ($\Delta \varepsilon_{\text{trans}}$ ~ 0.1 mm-mrad) ; analysis in progress

(Not-so-credible) Future Possibilities

- High energy
- Many passes
- CW Service to multiple wigglers/undulators using RF switching (as in CEBAF)
 - Subharmonic deflecting cavities split bunch trains, directing them to different FELs
 - Can imprint different charges, rep rates on each subtrain
 - Recombine drive beams for recovery (if ERL) using second system of RF deflectors

GERBAL: A "Generic Energy-Recovered Bisected Asymmetric Linac

Conclusions

- Recirculated, energy-recovered linacs offer a number of possible advantages over conventional architectures
 - Reduced cost
 - Flexible phase space management (magnetic compensation of RF curvature; multi-stage compression/decompression schemes)
 - Short time-of-flight paths for synchronization
- Numerous challenges remain
 - Beam quality preservation, beam stability, power deposition, halo...

but increasingly appear to be tractable