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“Conventional” (CW) FEL Layout

FELs
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e Source -> preaccelerator ->
15t stage of (chicane) compression -> 15t stage acceleration ->

2"d stage of (chicane) compression -> acceleration to full
energy -> FEL(s) -> dump drive beam

 Linac=>  bright beam..., but
high cost (accelerator, cryo (assume SRF), RF drive)
chicane compressors => curvature compensation
via harmonic RF => higher cost



Recirculated/Energy Recovered FEL
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e Source -> linac (via merger, serves as preaccelerator)
1%t recirculation (serves as 1t bunch compressor) ->
Reinject for 2"d pass through linac ->
2nd recirculation (serves as 2"4 bunch compressor) ->
Reinject for 3" pass ->
Transport to multiple FELs, lase ->

Energy recover beam(s) (if cost effective [high beam powers])



Rationale for Recirculation
and Energy Recovery

 Recirculation

— Reduce linac length/single-pass energy gain => cost control
* SRF, cryo costs high/beam transport costs low
e Could save 100s MS in cost of large system

— Provide handles on phase space

e Can provide intermediate stages of bunch compression &
curvature correction

e Betatron matching

— Alters machine footprint (reduce length/increase width)
 Aids/abets synchronization

* Energy Recovery

— Reduce required RF power => cost control
— Limit radiation losses (dump low energy beam)



Rationale for Recirculation
and Energy Recovery

Driver Linac Cost Analysis

trol

—— 1linac
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— Limit radiation losses (dump low energy beam)






Key Issues for Successful Implementation
of Multipass Recirculation

* Appropriate phase space management =>
— Longitudinal matching cycle

— Transverse control (betatron matching)

e Must be observant of collective effects and lattice
sensitivities...

* Preservation of beam quality during
(protracted) acceleration, beam handling,
energy recovery cycles



Schematic Longitudinal Match for ERL-Driven FEL

Important Features:

Energy transient when FEL turns off/on => phase transient at reinjection
=> transient beam loading

Must provide adequate RF power to manage these transients
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linac

7 injector
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No energy transients at dump when system properly tuned
Properly designed system can readily manage nonlinear effects:
Sextupoles compensate RF curvature, octupoles manage torsion...



Nonlinearity Control Validated By Measurement

Figure 1: Inner sextupoles to 12726 g-cm and trim quads to -215 g
Figure 2: trim quads at -185 g with same sextupoles

Figure 3: trim quads at -245 g

Figure 4: quads at -215, but sextupoles 3000 g below design, at 10726 g-cm
Figure 5: where we left it: trim quads -215 g sextupoles at 12726 g-cm

launch ¢

arrival ¢



JLab IR Demo Dump

A 2

core of beam off center,
even though BLMs showed
edges were centered

(high energy tail)



Extrapolation to Multi-pass System:
Implementation of Multistage Compression

* Multi-pass linac naturally suited for multi-stage compression
— Use recirculator compactions (Mcg, Teee, Weg((...) to rotate and correct
distortions in phase space
* Provides operational freedom in
— choice of acceleration phase
— bunch aspect ratio after compression
— Tolerance of variable (longer) injected bunch (space charge mitigation)

 Avoids use of harmonic RF
— additional cost

— aperture constraints
* Impedance burden

e acceptance limitations (spatial, and in RF phase during energy recovery - when
phase extent of beam can be large (~¥30° at RF fundamental, 90° at 37 harmonic)



Comparison: Single/Multistage Compression

Single stage Multistage
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Beam Dynamics Issues — see ERL 2009!

space charge
BBU

other wakes/impedances
— linac, vacuum chamber, diagnostic

impedences
* MicrowaveStudio modeling of all
components

* impedance budget, policy, enforcement
(impedence policing)

— resistive wall
vacuum effects

— lons

— gas scattering
intrabeam scattering

— IBS

— Touschek
halo

— Formation

— gas scattering

— beam formation processes

— CSR basic ("elegant")
— 3-d modeling
— microbunching instabilities

ISR
— emittance, dp/p...

Error analysis
— Alignment

* Magnets, cavities, diagnostics
— Powering

* Excitation, ripple, reproducibility
— field tolerance

* Homogeniety, calibration

— timing & synchronism
— phase & gradient
— diagnostic errors

RF drive

— transient analysis

Operational simulations
— threading, orbit correction
— emittance measurement
— lattice function tuning

— longitudinal matching
* phase transfer function
*  bunch length compression tuning
* energy compression tuning



Example System: JLAMP

Notional upgrade of existing JLab CW UV FEL to an amplifier-based
VUV/Soft X-Ray facility

Requirements

* Generate, accelerate, and deliver properly configured drive beam to
FEL

— 1 mm-mrad x 50 keV-psec x 200 pC
— loea ™~ 1 kA (200 fsec FWHM x 0.1% dp/p)

* Recover (degraded) exhaust beam

* Preserve beam quality, manage losses, avoid instabilities, etc etc
e Fitinvault (an upgrade)

e Cost< 100 MS




Design Parameters’

2010 2012
Bunch charge (pC) 135 200
Bunch rep. rate (MHz) 75 4.68
Average current, max (mA) 10 1
Norm. transverse emittance at FEL (um) 10 1
Longitudinal emittance at FEL (keV ps) 60 50
Energy spread at FEL (% rms) 0.4 0.1
Bunch length at FEL, rms (fs) 150 83
Bunch energy (MeV) 100 600

*F. Hannon et al., IPAC2010




Driver Concept







Analysis: Longitudinal Match, Space
Charge, CSR

Initially obvious concerns:

* CW Source/Injector Performance

* Phase space management scenario
e Beam quality preservation during

— Acceleration (space charge)
— Recirculation (CSR)



Source/Injector

Initial challenge: generate LCLS-class beam,
but CW (with lower gradients...)

Studying various cathode materials, gun
options
— LBL NCRF, JLab DC inverted, U.W. SRF

Exploring subharmonic (~¥750 MHz) injector
designs with type/spacing of RF cavities
tailored to specifics of gun

Initial results encouraging



Getter pump module
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Cathode insertion & withdrawal channel LS = C I a S S b e a m )

("load-lock" mechanism not shown)

Beam eXit aperture <"
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Injected Alpha

Injected Beta (m)

— “other wrong match” => no space charge effects (good
emittance), but lattice functions diverge
 Must negotiate between space-charge-driven
emittance degradation & lattice sensitivity to
instabilities (BBU) and error effects



Recirculator Design

* principle design driver: beam quality preservation
— Manage aberrations
« 2" order achromat (w/ M, T, ... control)
— Configure system to avoid ISR
* bend radii, lattice functions

— mitigate CSR
* Avoid parasitic compressions,
* single stage of compression
* abrupt final compression,

 I|nitial results (300 MeV recirculator) promising

— ISR not significant
— CSR

* 1t pass emittance well conserved (Ag,,,,. ~ 0.1 mm-mrad)
* Some evidence of microbunching; analysis in progress



ator) promising

d (A&, 50 ~ 0.1 mm-mrad)
5; analysis in progress




ator) promising

(Agirane ~ 0.1 mm-mrad)
; analysis in progress




with “csrdrift”




(Not-so-credible) Future Possibilities

 High energy
* Many passes

* CW Service to multiple wigglers/undulators using
RF switching (as in CEBAF)

— Subharmonic deflecting cavities split bunch trains,
directing them to different FELs

— Can imprint different charges, rep rates on each
subtrain

— Recombine drive beams for recovery (if ERL) using
second system of RF deflectors



GERBAL: A “Generic Energy-Recovered
Bisected Asymmetric Linac

— Machine configuration;
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Conclusions

* Recirculated, energy-recovered linacs offer a number
of possible advantages over conventional architectures

— Reduced cost

— Flexible phase space management (magnetic
compensation of RF curvature; multi-stage
compression/decompression schemes)

— Short time-of-flight paths for synchronization
* Numerous challenges remain

— Beam quality preservation, beam stability, power
deposition, halo...

but increasingly appear to be tractable



