Variable-period Permanent Magnet Undulators

N. A. Vinokurov, <u>O. A. Shevchenko</u>, V.G. Tcheskidov

Budker Institute of Nuclear Physics, Novosibirsk, Russia

1. Introduction

2. Splitted-pole undulator

a. General idea

b. Approximate formula for the hybrid PMU field

3. Mechanical design

a. Calculation of repulsing force

b. Possible design scheme

- a. Generation of spontaneous radiation
- b. High-gain X-ray FEL application

1. Introduction

2. Splitted-pole undulator

a. General idea

b. Approximate formula for the hybrid PMU field

3. Mechanical design

a. Calculation of repulsing force

b. Possible design scheme

- a. Generation of spontaneous radiation
- **b.** High-gain X-ray FEL application

a. General idea

b. Approximate formula for the hybrid PMU field

Undulator Simulation Example

- **1. Introduction**
- **2.** Splitted-pole undulator
 - a. General idea
 - b. Approximate formula for the hybrid PMU field
- 3. Mechanical design
 - a. Calculation of repulsing force
 - b. Possible design scheme

- a. Generation of spontaneous radiation
- b. High-gain X-ray FEL application

a. Calculation of repulsing force

b. Possible design scheme

Variable Period Number Option

- **1. Introduction**
- **2.** Splitted-pole undulator
 - a. General idea
 - b. Approximate formula for the hybrid PMU field
- **3.** Mechanical design
 - a. Calculation of repulsing force
 - b. Possible design scheme

- a. Generation of spontaneous radiation
- b. High-gain X-ray FEL application

a. Generation of spontaneous radiation

a. Generation of spontaneous radiation

b. High gain X-ray FEL application

FEL simulation example

_	Beam parameters	>		Si	mulation results
	Electron energy, Gev	5.84		2,4	
	Beam current, kA	2		_ 2,0 -	<pre>variable period variable gap</pre>
	Normalized emittance, µm	0.2		น อิ 1,6	
	Energy spread, %	0.01		1.2 -	
				0,10	0,12 0,14 0,16 0,18 0,20
/	Undulator parameters			0.10	λ, nm
	VPU minimal period, cm	1.6		× 0,08 -	
	VPU maximal period, cm	2.14		, Sou 0.06	
	Minimal gap, cm	0.6		Efficie	variable period
	VGU period, cm	2.07		0,04 -	
	VGU maximal gap, cm	1.1		0,02	0,12 0,14 0,16 0,18 0,20 λ, nm

Conclusion

1. We considered the new design of permanent magnet undulators which allows to change undulator period.

2. Variable period undulators have many advantages compared to conventional undulators.

3. Application of variable period undulators can open new prospects for further improvements of accelerator-based radiation sources.

Thank you for your attention !

