
How an FEL works 
Brian McNeil,
University of Strathclyde, Glasgow &

ASTeC, Daresbury Labs.



Some Sources of information
• J.B. Murphy & C. Pelligrini, “Introduction to the Physics of the 

Free Electron Laser”, Laser Handbook, vol. 6 p. 9-69 (1990).

• R. Bonifacio et al, “Physics of the High-Gain Free Electron Laser 
& Superradiance”, Rivista del Nuovo Cimento, Vol. 13, no. 9 p1-
69 (1990) [see also Rivista del Nuovo Cimento, Vol. 15, no. 11 
p1-52 (1992) ]

• Saldin E.L., Schneidmiller E.A., Yurkov M.V. The physics of free 
electron lasers. - Berlin et al.: Springer, 2000. (Advanced texts in 
physics, ISSN 1439-2674). 

• Z. Huang & K.-J. Kim, Review of x-ray free-electron laser theory, 
Phys. Rev. ST Accel. Beams 10, 034801 (2007).

• The World Wide Web Virtual Library: Free Electron Laser 
research and applications http://sbfel3.ucsb.edu/www/vl_fel.html

• W.B. Colson et al., Free Electron Lasers in 2009, Proceedings of 
the 31st International Free Electron Laser Conference (Liverpool, 
U.K.), WEPC43, 591-595 (2009).

http://sbfel3.ucsb.edu/www/vl_fel.html


Some figures

Some figures have been „borrowed‟ from other sources:

DESY (XFEL,FLASH) Group, Germany;

Riken/SPring-8 group, Japan;

LCLS group, USA.



What is an FEL and 
how does it work?

I – Spontaneous radiation

II – Coherent emission - FEL



What is a FEL?

NOT a quantum source!
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A classical source of tuneable, coherent electromagnetic 

radiation due to accelerated charge (electrons)
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I – Spontaneous radiation:
no interaction between electrons 

and the light they emit



Generation of EM Radiation

Non-relativistic charge source



Relativistic Emission

Most energy confined to the 

relativistic emission cone

Stationary electron

b
q

b

qr =  -1

Relativistic electron

v <~ c

Energy emission confined to 

directions perpendicular to 

axis of oscillation

qr



Planar Undulator or „Wiggler‟





Looking down the axis of an undulator



The electron trajectory in an 

undulator



An electron trajectory
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An electron trajectory in an undulator
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Consider a planar undulator field:   0,sin ,0 .u uB B k z

Rewriting the Lorentz equation: 
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An electron trajectory in an undulator

Look at the z –component using:   0
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An electron trajectory in an undulator
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The angle the electron makes 

with respect to the undulator axis 

can be approximated as:

The radiated power is confined 

mainly to an angle
01 .rq 

Hence if: 1,j r uaq q  i.e. 

The emitted power behaves like 

a „searchlight‟ when viewed at 

end of the undulator.

- „Undulator‟

- „Wiggler‟1ua
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Non-resonant emission - destructive interference
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The radiation is not phase-matched to the electron trajectory.

Radiation Electric field



Resonant emission - constructive interference
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The radiation and electron trajectory are phase-matched.
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Resonant phase matched emission by an electron
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Resonant phase matched emission for harmonics
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2nd Harmonic

3rd Harmonic

Harmonics of the fundamental are also phase-matched.



What are properties of radiation 

from an undulator ?



Resonant emission - constructive interference

The time taken for the electron to travel one undulator period:
u
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Resonant emission - constructive interference 

including harmonics and angle from undulator axis

Electron
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Where:                         is an integer representing the harmonic number1, 2, 3,n 



Undulator Equation
Substituting in for the average longitudinal velocity of 

the electron, , for the earlier planar case:

For a 3 GeV electron passing through a 5 cm 

period undulator with     = 3, the wavelength of the 

first harmonic (n = 1) on axis (q = 0) is ~ 4 nm
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is the RMS “wiggler/undulator parameter”

- In this form also valid for helical undulators
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dependence
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where ( )r t is the electron position at time t, and 

We can calculate the spontaneous emission spectrum 

in the frequency range d and solid angle d around the 

observation direction     by inserting the expression for the 

electron trajectory into the standard formula for far-field 

emission from an accelerated charged particle 

(see e.g. “Classical Electrodynamics” by Jackson , ch. 14)
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Spontaneous spectrum



If we do this we find that the fundamental 

spectrum on axis (          ) is :ˆn z
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Spontaneous spectrum



On axis fundamental spontaneous spectrum therefore looks like :
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Main features :

• Spectrum strongly peaked at frequency r

i.e. at wavelength

• Width of spectrum
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Undulator Radiation 

Undulator radiation (top) focused on a spot (bottom) by a refractive lens. 
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Summarising 



Undulator radiation

Setup>trajectory>undulator

Code available at: http://www-xfel.spring8.or.jp/



Electron bunching in a fixed
radiation field



The electron-radiation interaction
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The Lorentz force (electron dynamics)

Maxwell wave equation* (radiation evolution)

Both equations must be solved together simultaneously 

(self-consistently) to fully describe the FEL interaction

*Neglect static fields (space charge effects) – Compton limit

http://www.edinphoto.org.uk/0_P/0_photographers_0_early_pss_and_eps_members.htm
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Hendrick Antoon 

Lorentz 

The Lorentz Force Equation:

The rate of change 

of electron energy

How the electron is effected by the resonant radiation



Slow energy exchange

The rate of change of electron energy:
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Slow energy exchange
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Resonant emission – electron energy change
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Resonant emission – electron energy change
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 is +ve

Resonant emission – electron energy change

Energy of electron changes 

„slowly‟ when interacting with 

a resonant radiation field.
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Resonant emission – electron energy change
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For an electron with a different phase with 

respect to radiation field:
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Resonant emission – electron energy change
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Rate of electron energy change is „slow‟ but changes 

periodically with respect to the radiation phase 
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Resonant interaction – electron bunching

Axial electron velocity
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Resonant interaction – electron bunching

Axial electron velocity

r

Electrons bunch at resonant radiation 

wavelength – coherent process



Bunched electrons can exchange 

energy coherently with radiation
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Resonant interaction – Even harmonics
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3rd Harmonic

2nd Harmonic

Fundamental

Even harmonics do not allow a slow exchange of energy



Electron bunching in a self-
consistent radiation field:

The FEL mechanism
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Bunched electrons drive radiation 

Radiation field bunches electrons

Basic FEL mechanism
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Bunched electrons drive radiation 

Radiation field bunches electrons

Basic FEL mechanism
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These equations are assumed „slowly varying‟ i.e. any evolution is 

assumed slow with respect to the radiation/undulator period. They can be 

subsequently averaged over a radiation/undulator period. 4c rl  

     , , sin Radiation enveloper rA z t E z t k z t    
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Conventional laser Vs FEL pulses 

Active medium

Undulator

Conventional laser pulse interacts with all of the active medium

FEL radiation pulse may interact with only a section of the active medium z
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Partial form of wave equation 

describes slippage of radiation 

envelope through the electron pulse 
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Linear analysis
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Steady-state 

approx.: “No pulses”

Assume 

that:

Where:

The steady-state approximation can 

be thought of as the continuous e-

beam limit where the electron „pulse‟ 

has no beginning or end. In this case 

one can see that the radiation field 

can only be a function of the distance 

through the undulator and no pulse 

effects can be present.
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Linear analysis
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Differentiating linear equations:

  0
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Look for solutions:
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1 3 1 3
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

  
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   
          

   

Re

Im

First assume resonance: 0  Away from resonance: 0 

  3 2 1 0f      

the dispersion relation is:



 f 

3 Real

1 Real
2 Complex 
conjugate

1.89crit 



Linear analysis

  0

Solutions for 0:

1 3 1 3
   for   1; ;

3 2 2 2 2

ji z

j j

j

A
A z c e i i









    
           

     


Real parts give oscillatory solutions.

Imaginary parts give exponential growth:

and exponential decay:
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Constants of motion

 

 

. .

,

j

j

j

ij

d
p

dz

dp
Ae c c

dz

dA
b z t

d z

q

q


  



Two constants of motion can be obtained from 

these equations in the steady-state limit:

 

2

2

2* *

2

 constant 

 constant

A p

p
i A b Ab A

 

   

Where the constant is the variables‟ initial values.

A

z

Linear

Numerical

The first constant above corresponds to conservation of 

energy. The second, incorporating phase dependent 

terms is related to the Hamiltonian of the system. 

Opposite is plotted the linear and non-linear (numerical) 

solutions of the equations for a resonant interaction 

(δ = 0). From the definition of :

2 rad

beam

P
A

P
 

and the saturated scaled field |Asat|~1, it is seen that ρ

is a measure of the efficiency if the interaction.



The pendulum equation 

and phase-space

 

 

cos
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 2 cos

j
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dp
a

dz

d
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dz

q

q





  p

3

2



2



2




3

2




5

2



q

separatrix

The electrons can be thought of as a collection of pendula initially distributed 

over a range of angles with respect to the vertical. The radiation field is 

analogous to the gravitational field. The separartrix defines the boundary 

between pendula that librate and rotate. Of course in the FEL equations 

above, unlike a gravitational field, the radiation field can evolve in both 

amplitude a, and phase    .



Low Gain mechanism

1z 



Low Gain – needs cavity feedback
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Oscillatory terms dominate

10opt 

   3

3

1
4 1 cos sin

2

2.6

2.6

Gain   

where 

The Gain is a maximum for 

  in the low-gain limit.opt

z

z

z





 
     

  

 

 

 

Here we consider the low gain 

limit with 0.24z 

The phase-space representation 

of opposite will be used to look 

at what happens with the 

electrons and radiation during 

the interaction. 

FEL saturates when Gain=Cavity Losses



Low Gain – early stages

Beginning undulator

End undulator

0.4%Gain 



Low Gain – intermediate

Beginning undulator

End undulator

0.3%Gain 



Low Gain – saturated

10,000

10,005

10,010

Beginning undulator

End undulator

0.1%Gain 



High Gain mechanism

1z 
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Single pass high-gain amplifier
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1) e- begin to bunch about θ=3π/2

2) Radiation phase driven and shifts

3) Radiation amplitude is driven

F
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Can assume periodic BC over one potential well:
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1) e- begin to bunch about θ=3π/2

2) Radiation phase driven and shifts

3) Radiation amplitude is driven
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Can assume periodic BC over one potential well:

     i z
A z a z e


 Letting:

q3 2

0





Some resources

If you want to download some Fortran and Matlab codes that solve the 

FEL equations and plot their solutions you can obtain them from:

http://phys.strath.ac.uk/eurofel/rebs/rebs.htm



 
2

sat

rad rad

beam beam

P P
A

P P
   

Because the equations are universally 

scaled (depend only on initial conditions) 

and because               , can see from 

scaling of A that the rho parameter is a 

measure of the efficiency of the high-

gain FEL amplifier:

2
1satA 

Also see that the saturated radiated 

power: 
 sat

rad beamP P

As: ,beamP I and:
1

3 ,I 

see that: 
  4

3 ,
sat

radP I demonstrating

that, in the steady-state, the high-gain 

FEL interaction is a cooperative or 

collective interaction.



Pulse effects in the high gain



Conventional laser Vs FEL pulses 

Active medium

Undulator

Conventional laser pulse interacts with all of the active medium

FEL radiation pulse interacts with only a section of the active medium z

e-

t

 0,b z t  0,
A A

b z t
z t

 
 

 

Partial form of wave equation 

describes slippage of radiation 

envelope through the electron pulse 

z

An important parameter that defines how the FEL evolves within the pulses is the 

cooperation length                  - the relative electron/radiation slippage in a gain length 4cl  
gl



FEL pulses starting from noise in 

a High-Gain amplifier (SASE)

e- e-

vz<c

vz=c vz=c

vz<c

Regions of radiation pulse separated by                 evolve independently of 

other regions. Hence there can be many regions that evolve independently 

from different initial source terms due to noise*                                  . This 

leads to a noisy temporal and spectral radiation pulse.  

0t 0t 0t z

(Note: in the scaled variables a radiation wavefront propagates a distance        

with respect to the electron rest frame.)     

z

 0,  constantb z t 

~ 2 ct l



The spike widths are 2 cl

P
u
ls

e
 e

n
e
rg

y
Saturation length – shot-

to-shot fluctuations.



Self Amplified Spontaneous Emission 

(SASE) in the x-ray

SASE Power output:                               SASE spectrum:   



Estimate of initial mean SASE power
The radiation power evolves like:

And the saturation power:

From the analysis of *, the power in 

the linear regime is:

N is # e- in radn. wavelength.

From last 2 eqns.:

(1)

(2)

(3)

(4)

Equating (1) & (3):

 for:

and using (4):



*



Seeded FEL – improves SASE

e- e-

Longitudinal coherence of radiation pulse is inhereted 

from that of seed if Pseed>>Pnoise

Region of seed with good longitudinal coherence :

undulator



Spoiling effects



Energy spread

 
 0

0
r j

j j

r

z
p z

 


 

 
  

The effects of energy spread can be 

investigated by introducing a spread in the 

initial values of pj :

The steady state dispersion relation 

becomes:

with solutions for the imaginary 

part of lambda, determining the 

high gain case, shown opposite. 

Energy spread effects become 

less important when:

1





 


  

 f 



2 



Emittance*

http://www.fieldp.com/cpb.htmlCharged Particle Beams:*Stanley Humphries,

The beam emittance introduces two main effects:

1) The electron beam radius in a matched focussing 

channel** is determined by the emittance via:

2) The emittance introduces an energy spread in the 

resonant electron energy***. This can be added in 

quadrature with the real energy spread to estimate 

emittance effects in a 1D model:

β – betafunction 

of focussing 

lattice.





eff



 

***



Diffraction

The Rayleigh length lZR is that in which a beam diffracts to twice its 

transverse mode area. In an FEL amplifier, if the gain length of the FEL 

interaction is much greater than the Rayleigh length then diffraction can 

cause reduced coupling and longer saturation lengths.

lZR

Good coupling

Reduced coupling

Gain length, lg



*



~

Conditions 2 & 3 yield the „Kim-Pellegrini‟ condition on the emittance: 1~ 4n  



Thank You!



Real FEL designs

as taken from the 4GLS design*

http://www.4gls.ac.uk/documents.htm*4GLS Conceptual Design Report, Chapter 8:



4GLS CDR – April 2006

750-950MeV

600MeV


