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What is an FEL and
how does it work?

I — Spontaneous radiation

II — Coherent emission - FEL



What is a FEL?

@ A classical source of tuneable, coherent electromagnetic
radiation due to accelerated charge (electrons)




What is a FEL?

@ A classical source of tuneable, coherent electromagnetic
radiation due to accelerated charge (electrons)

@ NOT a quantum source!

E hv=E —-E_,
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I — Spontaneous radiation:
no interaction between electrons
and the light they emit



Generation of EM Radiation

Non-relativistic charge source



Relativistic Emission

Stationary electron Relativistic electron
V<~C
0
>
Energy emission confined to Most energy confined to the
directions perpendicular to relativistic emission cone

axis of oscillation

0=y



Planar Undulator or ‘Wiggler’







Looking down the axis of an undulator
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The electron trajectory in an
undulator



An electron trajectory

The Lorentz force equation d (ij\!j) B
for the j-th electron is written: T —e(E+y;AB) |7

1
N
The independent variable of the electron trajectory here is t, and only t:

dr.
(1) =(x (1), y;(t).z;(t)) andso: v, :d_tj
It is convenient to change the independent variable to z to get:

r(2)=(%(2).y,(2).2); t;(z) = %»??

f(t+At)—f(t)

(t)=f(z(t)); f(t+At)= f(z+Azj); Az, =V At

] Z)

f(z+Az,)-f(z)

lim vV, lim
i [V >0 Azj /sz Az;—0 Azj
d

Bl <l




An electron trajectory in an undulator

Rewriting the Lorentz equation:

d(y. B

) (E+c,(t)AB)

dz mc’/,

From the Lorentz equation we can derive:
dy.

dt mc”~ -~ -
so that in an undulator, neglecting dg; ___ e B AB
radiation fields & space charge: dz ¥,MCp,. <10 =

Consider a planar undulator field: B =B, (O,sin (kuz),O).
For x-component:

dg,. dg. .
Pi___ ¢ p,B, = By _ 8, sin(k,z) = Xj:—icos(kuz)
dz  y,mcp,, dz  y,mc 7o
dx.
Can integrate again: d—‘z—ﬁcos(kuz) = X~ - al“< sin(k,z) | For 7% >>1,
z
7o 7o = p,; =1
eB
where: a, = —*

o Typical values 1<a, <5; 7., =2000; 4, =2cm
mc

u



An electron trajectory in an undulator

| a, 1
Look at the z—component using: B,; =——-cos(k,z) and y, =
J Yo ( ) : \/1—§j-,§j
2 1
= B =1-5 -7 =1—[icos(kuz)] = =1——2(1+ajcosz(kuz))
o Yo
2 2
N _1_i 1Jrau(l+cos(2k z)j :1_%(“ a; |, a COS(ZkUZ)j
7/0 2 Yo 2 2
2
1o - 1 [1+ L& cos(2kuz)j
7/0 2
Now use 1- 87 =(1+ B,;)(1- B,;) = 2(1- B,;):
2 2 2
:>(1—,sz) 1 (Ha a; cos(ZkUZ)j . _~1_i£1+au+au cos(2kuz)j
270 2 2 27/0 2 2

Can be averaged to give: ,B ~1—i[1+

27/0

a,
3



An electron trajectory in an undulator

X The angle the electron makes
< with respect to the undulator axis
’ can be approximated as:

0. dx.
/-J\ R tan QJ. :iz—icos(kuz)
N N v

a,

= 0, oc — for y, >> a,
Yo

The radiated power is confined
X R mainly to an angle 6. =1/y, .

Hence if: 6, >>0 i.e.a, >>1,

The emitted power behaves like
/ a ‘searchlight’ when viewed at
end of the undulator.

a, ~1 -’'Undulator
a, >>1 -'Wiggler




Non-resonant emission - destructive interference

Radiation Electric field ‘ E/\/\/\/\/ :\/\/\/\/\/\I
[

The radiation is not phase-matched to the electron trajectory.



Resonant emission - constructive interference
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The radiation and electron trajectory are phase-matched.



Non-resonant emission Resonant phase matched emission
| |

7\‘u i + }\‘u i +
Ay + A, +




Resonant phase matched emission by an electron




Resonant phase matched emission for harmonics

; ; 'n A
I\W\?\'ri I\V\N\ 2nd Harmonic

Harmonics of the fundamental are also phase-matched.



What are properties of radiation
from an undulator ?



Resonant emission - constructive interference

Z

The time taken for the electron to travel one undulator period:

A resonant radiation wavefront will have travelled —

Equating:



Resonant emission - constructive interference
Including harmonics and angle from undulator axis

. . A
Condition for constructive interference: d=ni=-—-4 cos@

d

d \/
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Electron

Where: N=1, 2, 3, ... is an integer representing the harmonic number




Undulator Equation

Substituting in for the average longitudinal velocity of
the electron, g, , for the earlier planar case:

A . Including angular
= A=7 (1+ a, dependence
2Ny,

5 = A B,"" is the RMS “wiggler/undulator parameter”
2zmc - In this form also valid for helical undulators

For a 3 GeV electron passing through a 5 cm
period undulator with &,= 3, the wavelength of the
first harmonic (n=1) on axis (6 =0) is ~4 nm



Spontaneous spectrum

We can calculate the spontaneous emission spectrum

In the frequency range dw and solid angle d¢2 around the
observation direction N by inserting the expression for the
electron trajectory into the standard formula for far-field
emission from an accelerated charged particle

(see e.qg. “Classical Electrodynamics™ by Jackson , ch. 14)

_n-% )

2

dt

2 2 |x

d’l i
i ) 5 | <)

where r(t) is the electron position at time t, and S =

0 <



Spontaneous spectrum

If we do this we find that the fundamental
spectrum on axis (N=12)is:

s _ ™
d°l X sin® X
(N=2,w) oc —;
dodQ X
\_ J
Where: X=zN, w;wr

r

N, Is the number of undulator periods

2
o = 2Cku_7/20
1+3a;

IS the central (resonance) frequency



On axis fundamental spontaneous spectrum therefore looks like

O I

2 o
dewd? .|

0.4}

IS
3

0.3}

0.2}

0 n . . . . . n
\ -10 -8 -6 -4 -2 0 2 4 6 8 10 /

Main features :
« Spectrum strongly peaked at frequency o,
l.e. at wavelength _2
2 =2"C_, (“azv ]
@, 275

Aa)Nl
0 N

u

 Width of spectrum




Undulator Radiation

Undulator radiation (top) focused on a spot (bottom) by a refractive lens.



Summarising

Harmonic Bandwidth ~1/nN,

m W

VVV

UNDULATOR RADIATION

ental Bandwidth ~‘I/NU

BROADBAND SYNCHROTRON RADIATION

A, |




Undulator radiation
Setup>trajectory>undulator

Code available at: http://www-xfel.spring8.or.jp/



Electron bunching in a fixed
radiation field



The electron-radiation interaction

The Lorentz force (electron dynamics)

Both equations must be solved together simultaneously

(self-consistently) to fully describe the FEL interaction

e ?
J g
\
o 1 Lkl

*Neglect static fields (space charge effects) — Compton limit


http://www.edinphoto.org.uk/0_P/0_photographers_0_early_pss_and_eps_members.htm

How the electron is effected by the resonant radiation

The Lorentz Force Equation:

- d(deTo\!j) _o[E +v, 5]

Hendrick Antoon
Lorentz

2
The rate of change - d (7/j m,C )

of electron energy dt




Slow energy exchange

2
The rate of change of electron energy: d (7,- MoC ) _ _|e| E-v,
dt T
Consider plane-wave field: E =X E;sin(k,z—a,t)
Interacting with an electron on trajectory: [, ; = —ﬁcos(kuzj) Assuming:
Yo Vi =70
d (7-m0C2) : d
= Jdt =—|e|E-v; =—|¢|E,sin(k.z; - at) —7—zcos(kuzj)
dy. E
- i i3, >sin(k z; —wt)cos(k,z; )
dt  y,myc ’ ‘

- ‘j:;lfg %(sin((kr +k,)z; —a)rt)+5in((kr -k, )z, —a)rt))
0°°0



Slow energy exchange

ddyt,- _ |;|)::0'§g %(sin((kr +Kk,)z, ~at)+sin((k -k,)z, o))
The first sin term on RHS is a wave with speed in z direction of:
0 ck K
Tk kak O P T
Recall previous result for resonance:
ir=1 -5, 2 = 2, K,

T A4, k.tk,

Zj

| _ dy,
So, a resonant electron with average speed :sz will have % ~ constant
t

The second sin term on RHS is a wave with speed in z direction of:

@ ck, k

v, =—r = B=—t_>1
* Tk -k, k -k % k —k,

— fast, non-resonant, phase variation.




Resonant emission — electron energy change




Resonant emission — electron energy change




Resonant emission — electron energy change

Energy of electron changes IS +ve

‘slowly’ when interacting with

a resonant radiation field. [flb [ﬂb d‘h




Resonant emission — electron energy change

For an electron with a different phase with
respect to radiation field:




Resonant emission — electron energy change

Rate of electron energy change is ‘slow’ but changes
periodically with respect to the radiation phase




Resonant interaction — electron bunching

d (7/ij02)
dt

oMo

=—[e[E -V,

Axial electron velocity
| | |

<€ >




Resonant interaction — electron bunching

Electrons bunch at resonant radiation
wavelength — coherent process




Bunched electrons can exchange
energy coherently with radiation

Coherent synchrotron radiation emitted
by electron bunches

G ,/ \ \ 72 %% ; s’_’
e WAV
14oher{nt | coherent

N N

N
Radiation power OC(ZEj e"”l] ZEJZ+ZZEJE g/l
j=1 j=1 k=1
j#Kk

If ¢ ~4 V] thenthe 2" term >> 1s'term as there are N ? of them
and results in coherent emission.



Resonant interaction — Even harmonics

|
IVVVVV\, : 3rd Harmonic
|
|
\ Fundamental

Even harmonics do not allow a slow exchange of energy



Electron bunching in a self-
consistent radiation field:
The FEL mechanism



Basic FEL mechanism
- R

Radiation field bunches electrons
B i

&

F, :-\e\[lg+ij5}
o e T Y,

~

unched electrons drive radiation

N
J, =—|e|> v, 8(r—r;(t)) The transverse current density
=


http://www.edinphoto.org.uk/0_P/0_photographers_0_early_pss_and_eps_members.htm

Basic FEL mechanism
R

Radiation field bunches electrons
U

0, =(k, +k,)z, -t

wp = (rzn.pkffnm.)“E

fB = JDU::] — Ji(Q)

¢ = a/2(14+a2)
A chit
lg 1
These equations are assumed ‘slowly varying’ i.e. any evolution is ] \ /4
g — Aw /I

assumed slow with respect to the radiation/undulator period. They can be
subsequently averaged over a radiation/undulator period. l. = ﬂr/47zp


http://www.edinphoto.org.uk/0_P/0_photographers_0_early_pss_and_eps_members.htm

Conventional laser Vs FEL pulses

Active medium

Conventional laser pulse interacts with all of the active medium



—

do,
iz D
dp. i0,
d—ZJ = —(Ae +cC.C )
2R =b(zX)
Steady-state
approx.: “No pulses”
d_lzz —iP—1ob
dz
9P _Atisp
dz
Ay
dz

Linear analysis

Assume

that: <

/‘

Where:

-

A, <<1,

pj =0

0

0, =6,,+6, etc. where: §; << 1
(e'®y=0; 6,,=U(0,2r]

2
. X
Using: e* zl+X+?+...

:ei(eojwlj) :eiaojeie1j zeieoj (1+i91j)
N

1
X)=— X.
The steady-state approximation can
be thought of as the continuous e-
beam limit where the electron ‘pulse’
has no beginning or end. In this case

- _8
b= (—16e ™Y one can see that the radiation field

can only be a function of the distance

_ -ig
P = P.€ ") through the undulator and no pulse

effects can be present.



Linear analysis

First assume resonance: 6 =0 Away from resonance: 6 # 0

Differentiating linear equations: the dispersion relation is:

|
|
|
|
42A  db L f(A)=22-522+1=0
=2 — — — _iP I X f (i) :
dz dz : ! 1 Real
3 Real ! 2 Complex
d A — i d_P _iA : = ! conjugate
dz dz | : .
plm 2 | U o A
ook for solutions: | :
A(7)= Ag™ 1N
| 0.7
= -i1° =i N\)/ - . Bos
3 _ | £ o3
=4 L : 0:2* crit ~1. 89\ m ﬂ
= A= -1 E +1 [ —— ﬁ | 3 5
2 2 2 :

Fig. 3. Im A as a function of § for (a) o.,=0; (b} g,=2.0; (c)
O’(=5.0; (d) Us=8.0.



Linear analysis

Solutions for 6 =0:

NI

Real parts give oscillatory solutions.
Imaginary parts give exponential growth:

and exponential decay:

| A() Forz >1

A‘)ZceJ for 4, { ~1 (Eﬂﬁj;

2
A\
2
+i£
2
lg = Aw /4Tp
ie - ie
3 3



Gain as a function of detuning from resonance

4=

20

0 20

0
Oscillatory
terms dominate

A . 2
Gain = ‘ ‘ ‘AO‘
\/\"""""“‘". 4000
. . . Z=06
-20 0 20 30001

d
£ 2000f

Oscillatory & 81000_
exponential i

0

30 20 10 0 10 20 30
5

+ve exponential
term dominates



Constants of motion

dé. Two constants of motion can be obtained from
—_J = P; these equations in the steady-state limit:
dz .
2
dp, ” |A”+(p)= constant
d—_ = (Ae "+ C.C ) < 2>
Z * *

p—+i(A b— Ab )—5\A\2 = constant
dA - 2
— = b(Z i )
dz Where the constant is the variables’ initial values.

The first constant above corresponds to conservation of
| Linear energy. The second, incorporating phase dependent
terms is related to the Hamiltonian of the system.
/ Opposite is plotted the linear and non-linear (numerical)

12f solutions of the equations for a resonant interaction
‘A i| / \ / (6 = 0). From the definition of :

P
plA =2t

beam

) - - - and the saturated scaled field |A,|~1, it is seen that p
Z is a measure of the efficiency if the interaction.



The pendulum equation
and phase-space

| ' do.
1.5 g - separatrix 1 _ D.
1 b R dz .
05 dp;
| d_ZJ =—2acos(0, +¢)
-0.5 da
s d—7:<cos(6’+¢)>
-1.5} - d¢p 1.
- L Cat?)
2 2 2 9 2 2

The electrons can be thought of as a collection of pendula initially distributed
over a range of angles with respect to the vertical. The radiation field is
analogous to the gravitational field. The separartrix defines the boundary
between pendula that librate and rotate. Of course in the FEL equations
above, unlike a gravitational field, the radiation field can evolve in both

amplitude a, and phase ¢.



Low Gain mechanism
z<1



Low Gain — needs cavity feedback

electron bunch g

2 output pulse
~ |
5
——
o
~
—

(\* / ' A AN

Random electron phase: Electrons bunched at
incoherent emission radiation wavelength:
coherent emission

2221,




Q p—

I
o
h —= W o W = n
A A ) !

—

Gain=47° ig(l— cos(A) —ésin (A))
A 2
where A=07

The Gain is a maximum for A = 2.6

= O In the low-gain limit.

z

Here we consider the low gain
limit with Z = 0.24

The phase-space representation
of opposite will be used to look
at what happens with the
electrons and radiation during
the interaction.

-4

20 g 20
Oscillatory terms dominate

FEL saturates when Gain=Cavity Losses



Low Gain — early stages

I = D.000000e+000

..................................................

Beginning undulator

il 1 L
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I = Z2.400000e-00

End undulator
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Low Gain —

I = D.000000e+000

T TR e s T I

Beginning undulator

il 1 L

2 3 4 5 6

T T T T T

T
I =. B.400000g-001

End undulator
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o

Electron phase-space
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High Gain mechanism
Z>1



COHERENT EMISSION

INCOHERENT EMISSION
Electrons randomly phased
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photon
beam

beam
dump

Undulator

09 power ) i

distance




v £ - @  Canassume periodic BC over one potential well:

Letting: A(Z)=a(z)e""" =

do
dz
dp;
o
“(D %:<cos(6’+¢)>
A 4_/N ¥:_1<Sin(9+¢)>

a

' / \ 1) e- begin to bunch about §=3x/2

2) Radiation phase driven and shifts

=—2acos(0; +¢)

v/ \/ 3) Radiation amplitude is driven

37/2 0



Can assume periodic BC over one potential well:

Letting: A(Z)=a(z)e"" =

ao;

iz "

dp;

d—7=—2acos( 0, +¢)

% =(cos(0+¢))
% = —1<sin(9+ 2)

a

1) e begin to bunch about §=3x/2

2) Radiation phase driven and shifts

3) Radiation amplitude is driven

37/2 0
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Some resources

If you want to download some Fortran and Matlab codes that solve the
FEL equations and plot their solutions you can obtain them from:

http://phys.strath.ac.uk/eurofel/rebs/rebs.htm
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O.1L

0.0W:
0.00W;
WO*“;

c 2 4 6 8 101214

/
Scaled intensity
Also see that the saturated radiated
power: (sat)
I:)rad szbeam

As: B ocl, and:pocl%, Q

4
see that: P®) o Ié

td , demonstrating

that, in the steady-state, the high-gain
FEL interaction is a cooperative or
collective interaction.

0.81

0.6

0.4

0.21

Because the equations are universally
scaled (depend only on initial conditions)
and because |A.| =1 , can see from
scaling of A that the rho parameter is a
measure of the efficiency of the high-
gain FEL amplifier:

> P plsa)
Yo, A — rad — o rad
| | I:)beam I:)beam

B 101214
Z

Bunching parameter

0 2 4 6



Pulse effects in the high gain



Conventional laser Vs FEL pulses

Active medium

Conventional laser pulse interacts with all of the active medium 7

An important parameter that defines how the FEL evolves within the pulses is the
cooperation length I. =4/47p - the relative electron/radiation slippage in a gain length Ig



FEL pulses starting from noise In
a High-Gain amplifier (SASE)

’ o)

g § Gz
(Note: in the scaled variables a radiation wavefront propagates a distance Z
with respect to the electron rest frame.)

Regions of radiation pulse separated by t ~27zl, evolve independently of
other regions. Hence there can be many regions that evolve independently
from different initial source terms due to noise* b(Z =0,T)# constant . This
leads to a noisy temporal and spectral radiation pulse.
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Spectrum, Temporal Structure, and Fluctuations in a High-Gain Free-Electron
Laser Starting from Noise

R. Bonifacio,? L. De Salvo,' P. Pierini,* N. Piovella,! and C. Pellegrini®

¢, =5t | £, =201, 6, =501,
2 E T T 3 r | T
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A% 1 1A% f 1 1A
E i1k .
. F/\/\ F ﬂ mf\ j S
0 F | .1 0 i ] U 9
0 5 10 0o 10 20 Q
El 'El o
b
FIG. 1. Results of the numerical model: temporal structure %
of the radiated pulse, |A|? vs 21, at the first saturation, for o ol 4
three values of the electron bunch length, at z = 14¢,; and for 0 20 40 60 RO
(|bo|?) = 107°: (a) £, = 5¢., (b) € = 20£., and (c) £, = 50¢.. -
The temporal scale is in units of 2; = (2 — vy t)/£.. 10
10 - 1 - 40 ¢ ——— 100 ——————— 1
g L (@ 1, F - (®) 1 80 - () - Tone
. b : 1 60l
2 6 1420 b ERPT At | 0.1
AN {40 © 1.
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Saturation length — shot-

FIG. 3. Spectrum of the radiated pulses, for the same cases to-shot fluctuations.



Self Amplified Spontaneous Emission
(SASE) In the x-ray

SASE Power output:

150

SASE spectrum:

100 | -
B0
= 100
(-]
LS
S 60 E
[
Bl -.. a
o ' =
dl:l .-__ i Sl:l B
L =
20
a a
a 50 100 150 200 250 020 -015 -010 005 000 Q05 040
T [fs] Al [P6]

Figure 5: Typical temporal {left) and spectral (right) structure of the radiation pulse from
a SASE ®FEL at a wavelength of 1A The red lines correspond to averaged values. The
dashed line represents the axial density profile of the electron bunch. Mote that the
growth rate in the electron bunch tail is reduced due to the reduced current. Therefore,
the radiation pulse length of 100fs (FVWHM) is about a factor of twao shorter than the
electron bunch,



Estimate of initial mean SASE power

. : , Praal0 .
The radiation power evolves like: Praq(Z) =~ ”g( ) exp(V/32) (1)
And the saturation power: Psar = pPream (2)
From the analysis of *, the power in /o
. y . p o 2\/? exp (\/ »57?) 9 (3)
the linear regime is: Prada(Z) = 2 —=— P Doeam
3/ \/Zi\")\
N, is # e in radn. wavelength.
. - A p? _
From last 2 eqgns.: I (Zear) = 2V3Zear — In (35;;2‘\,7;_3) =0

=> Z.a ~In(Ny/p) /3  for 2V3Zear > In (Zanr)  (4)

Equating (1) & (3) Prad(oJ ~ 2!,—7?[)23';5:&:?1 and using (4)

V4 ZgatiV

|2 L‘r \,-Tﬂ

Nxv/In (Ny/p)

Pr‘ad (“) ~

9
— Y Pbr::a-m — |..—1[I

* Km-'a.ng—Je-Klm; Phys. Rev. Lett., 57, 1871, (1986)



Seeded FEL — improves SASE

Region of seed with good longitudinal coherence :

.em.A

Longitudinal coherence of radiation pulse is inhereted
from that of seed if Py .y>>P

noise



Spolling effects



Energy spread

The effects of energy spread can be

investigated by introducing a spread in the

initial values of p; :

yr_j/j(fzo)

§;=p;(z=0) oy

The steady state dispersion relation

becomes:

(= o]

déf(d)
e j (J.~J)2_0

with solutions for the imaginary
part of lambda, determining the

high gain case, shown opposite.

Energy spread effects become
less important when:
O-y <l = 7 <p

_ =
0.8f Y
— cy=0.5
0.7 3Y=1
0.6f G =4
Y
< 0.5} —_— (_yy=6
£ = -
0.4} Gy—8
0.3f
0.2}
01f
0 » . »
-10 -5 0 5 10

o

R. Bonifacio !, L. De Salvo Souza and B.W.J. McNeil Optics Communications 93 (1992) 179-185

v



Emittance*

The beam emittance introduces two main effects:

1) The electron beam radius in a matched focussing

. . . . < y
channel** is determined by the emittance via: & @ P
L |&F ~ N e Y A f — betafunction
- 4 == 16 T"D”“"S “:ﬂ'ﬁ.-‘n 5 of fOCUSSIﬂg e I by rms

lattice.
2) The emittance introduces an energy spread in the
resonant electron energy***. This can be added in ,, ,

quadrature with the real energy spread to estimate B
emittance effects in a 1D model:

. 2 1.2
o Eni, ki, 3 .
€ — : . eff —
4y (1 + a?,)

O-eff

/4

—

<p

Lers

*Stanley Humphries,Charged Particle Beams: http://www.fieldp.com/cpb.html

***R. Bonifacio !, L. De Salvo Souza and B.W.J. McNeil Optics Communications 93 (1992) 179-185



Diffraction

Gain length, |,
1| =——>

"0 0.5 1 1.5 2
Z
The Rayleigh length | is that in which a beam diffracts to twice its
transverse mode area. In an FEL ampilifier, if the gain length of the FEL

interaction is much greater than the Rayleigh length then diffraction can
cause reduced coupling and longer saturation lengths.



8.1.3.3 Summary of Criteria for Optimum FEL Performance*

The one-dimensional theory describes the best-case linut for FEL operation. The following
summarises the limits required for the one-dimensional equations to be a valid approximation

for a high gain FEL interaction that achieves saturation:

L >»L - The undulator 1s significantly longer than the interaction gain length

o [ <lig - The gain lengthis < the Rayleigh range

* Lxf - The gain length1s  ~  the betatron function

e J =i - Electron beam wander off-axis is much less than the beam radius

e 7, ~constant - The electron beam radmus is approximately a constant

* O, <p - Homogeneous relative energy spread i1s less than the FEL coupling
parameter

¢ g <p - Resonant relative energy spread due to emuttance is less than the

FEL coupling parameter

Conditions 2 & 3 yield the ‘Kim-Pellegrini’ condition on the emittance: &, < ¥4 /47



Thank You!



Real FEL designs
as taken from the 4GLS design*

*4GLS Conceptual Design Report, Chapter 8: http://www.4gls.ac.uk/documents.htm



4GLS CDR — April 2006

High Average

XUV-FEL Injector Current Injector
™ - _
Main Linac Beam Separator
0 - - - - -

Seed Laser

750-950MeV
ol

XUV-FEL

VUV-FEL

High Average
| Current Loop
@@ Linac ;
@l Undulator/ FEL 6OOM eV
i Dipole
B Beam dump
a Photoinjector / gun
D Laser

[:( Optical Mirror



