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The Modeling Frame

» Undulator Field (~200 m)
Longitudinal position is
_ independent variable. Undulator
— > Z field and focusing become “time-

dependent’

» Electron Beam (~50 um)
Co-moving frame:

s=z—cft

» Electron Slice (~1 ,&)

Slice thickness A defines reference

® ® ® e wavelength, which is not necessarily
® o © the resonant wavelength. Though
. ® both should be close to avoid strong

drifts in slice: k

ho= vk




The FEL Equations (period-averaged)
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» Field Equation
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Limitations to the Current Model

» Resonant Behavior

> Significant change in beam parameters occurs only over
many periods, which allows to drop fast oscillating terms in
the equation.

» Non-rapid evolution of energy modulation and

radiation field

- Particle motion averaged over undulator period and/or
radiation wavelength.
- Slow Varying Envelope Approximation of field equation.

» External effects (wakefields, undulator field taper)
added ad hAoc to the FEL equations.




Time-Dependent Simulations
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» Most codes evolved from “steady-state”, single
frequency algorithm, where the time-derivative is
dropped.

» Time-dependence is added by hand by enforcing
the slippage.
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Time-Dependent Simulations

» Advantage:

- Allows for sequential progression through bunch (loop
along bunch and undulator)

> Very modest memory demand (in particular when inner
loop is along undulator)

- Fixed number of particles per slice, allows for very efficient
parallelization of the codes

» Limitations:
- Sampling of electron bunch parameters are at best on the
radiation wavelength (steady-state algorithm)
- No exchange of particles among slices

- Suppression of gain towards the limits of the bandwidth
due to underlying steady-state model.




Bunching and Harmonics

» Harmonics are described by their own equation and

bandwidth are disjointed.

» Fundamental challenge is the particle distribution
resolution on sub-wavelength scale to provide the
correct shot noise on all harmonics: N

1 me,
_ 1 bunching factor: b,=—> e""
b V=0 2\_ 1 unching facto :
B)=0 (bf)= N
» Pure random distribution requires N =N,

» To have control on the particle fluctuations on all
harmonics the method of beamlets is used:

6D macro particle with
multiple internal degrees of bunching



Shot Noise Algorithm

» Most common algorithm by W.Fawley:

- Duplicate macro particles and distribute evenly over the
phase (beamlet = set of M, macro particles):
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- Apply Fourier series for n harmonics:

0, —>0, + Zak cos(kﬁj + ¢j)
k=1
W. Fawley, PRSTAB 5 (2002) 070701

» Algorithm requires A, > 2n, which leads to large
particle numbers for HGHG cascades (e.g. FERMI,
LS, SwissFEL with 7 ~200)
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Current Status of FEL Codes

» Codes have been successfully benchmarked against
experimental results of SASE FELs (e.g. LEUTL, SDL,
FLASH, VISA, LCLS, SPARC)
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Time Consumptions of FEL Codes

» Thanks to parallelization of the codes runs times
are reasonable for the most demanding single-

pass SASE FELs

- Example: LCLS with 4-108 gridpoints and 6-108 macro
particles requires about 200 CPU hours per run.

» Emerging concepts are pushing the grid points and
particle numbers to larger values
- Example: 1 A wavelength X-ray Free-electron Laser

Oscillator.
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Modeling Challenges: TT FEL

» Plasma Injector to generate 1 GeV, 1 micron long
bunch with peak current of up to 10-20 kA.

» Strong space charge effects and dispersion of
undulator stretches bunch in longitudinal phase
space.

» Micro bunching will be stretched (like an
accordion), shifting the wavelength of bunching
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Modeling Challenges: EE-HG

- - -

Modulator 1 Chicane 1 Modulator 2 Chicane 2 Radiator

D. Xiang and G. Stupakov, PR STAB 12, 030702 (2009)

» Echo Enabled Harmonic
Generation induces a high
harmonic current
modulation as a seed for a
FEL (starting from the
coherent emission of the
current modulation).

Currently considered the most
promising method to seed X-ray FELs




Modeling Challenges: EE-HG

4

Dynamic in the two chicane very important because
it limits the efficiency of the seeding scheme.

Limiting factors are:

- Coherent Synchrotron Radiation
> Quantum fluctuation in incoherent synchrotron radiation
> Rq;q, Rs, and higher order terms of chicane

FEL requires a large particle number to resolve
sub-wavelength structures but they cannot model
chicanes

CSR codes cannot handle large number of particles
in FEL code dumps after modulator 1 and 2

Modeling strategies are currently
explored



Addressing the Challenges

» No averaging over undulator period or radiation
wavelength

» Convenience of slicing and sequential progress
through bunch have to be given up. Full bunch
needs to be in memory.

» Non-average codes improves upon:

o

o

No restriction in bandwidth of the FEL

Variation of electron beam parameters and radiation field
on a scale smaller than the FEL wavelength (avoids the SVEA
approximation, which suppresses CSE effects)

Allows for a simplified broadband shot noise algorithm

Electron motion over many wavelengths (chirp, space
charge)




The Problem to Solve...

» Particle Tracker almost unchanged, except
longitudinal position is not expressed as a phase
and oscillation of particle is included in trajectory.

» Longitudinal discretization is now included in the
effective finite-different/finite-element field
equation:
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» New numerical methods have to be applied to solve
field equation




Example of Non-Average Code
» Group by Brian McNeil
» Study of superradiant regime of FELs, which

typically exhibits a spike narrowing process,
violating the SVEA approach
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Towards the Future...

» Unlike established FEL codes, which were
developed for single processor and then ported to
parallel computer, new codes are utilizing the
computer architecture from the start.

» Highest detailed model requires about 5-10°
particles and radiation modes/gridpoint,
corresponding to about 500 Gbyte distributed
memory.

Can be provided by currently existing
parallel computers




Thank you for your attention
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