1

The effect of undulator harmonics field on Free-Electron Laser harmonic generation

Qi-ka, Jia

National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei, Anhui 230029,.China Jiaqk@ustc.edu.cn

Outline

- Introduction
 Analysis

 in an ideal undulator
 in an actual undulator
 3rd harmonic case
- Summary

INTRODUCTION

• Using the higher harmonic:

a way for FEL => shorter λ s.

$$\lambda_{sn} = \frac{\lambda_u}{2n\gamma^2} (1 + a_u^2)$$

• For a planar undulator with $B_u \sin(k_u z)$, the electron's non-uniform axial motion (β_z) => the odd harmonics radiations on axis n=1,3,5,...

•The harmonic radiation can be enhanced by $\bigcap B_{un} *$

Some methods for this were proposed, *eg*.:

putting high permeability shims inside the undualtor **

optimizing magnetic blocks size in a standard Harbch undulator ***

• Here, we analysis the effect of B_n on FEL harmonic generation

*M.J. Schmitt and C.J. Elliott, IEEE J. Quantum Electron.QE-23 (1987) 1552. **M. Asakaw *et al.* Nucl. Instr. and Meth. in Phys. Res. A 358 (1995) 399-402, A 375 (1996) 416-319 ***Qi-ka Jia , "Undulator Harmonic field enhancement analysis", Proceedings of IPAC10, WEPD033/3165

ANALYSIS

In a ideal planar undulator

$$\vec{B}_u = \hat{B}_u \sin(k_u z)$$

the e-s oscillate*

国科大同辐

at odd harmonics in the transverse direction

$$\beta_x \approx -4 \sum_{n=1,3,5,\dots} \left(\frac{K}{4\gamma}\right)^n \frac{(-1)^{(n-1)/2}}{[(n-1)/2]!} \cos[nk_u \overline{z}]$$

at even harmonics in the axial direction

$$\beta_{II} \approx \overline{\beta}_{II} + 2\sum_{n=2,4,..}^{\infty} \left(\frac{K}{4\gamma}\right)^n \frac{(-2)^{\frac{n}{2}}}{[(n-2)/2]!} \cos[nk_u \overline{z}]$$

=> radiations

on-axis odd harmonics even harmonics off-axis

*Qika Jia, "Harmonic motion of electron trajectory in planar undulator," PAC09-WE5RFP088

For FEL

the *n*th harmonic optical field equation and the phase equation in 1-D mode:

$$\frac{d}{dz}\tilde{a}_{sn} \Box \frac{r_e n_e a_u [\boldsymbol{J}, \boldsymbol{J}]_n \lambda_{sn}}{\gamma} \langle e^{-in\phi} \rangle$$

$$\frac{d^2\phi}{dt^2} = -\frac{c^2}{\gamma^2} 2a_u k_u \operatorname{Re} \sum_n [\boldsymbol{J}, \boldsymbol{J}]_n k_{sn} \tilde{a}_{sn} e^{in\phi}$$

$$\phi = (k_s + k_u)z - \omega_s t$$

the coupling coefficient:

$$[J,J]_{n} = (-1)^{\frac{n-1}{2}} [J_{\frac{n-1}{2}}(\frac{na_{u}^{2}}{2(1+a_{u}^{2})}) - J_{\frac{n+1}{2}}(\frac{na_{u}^{2}}{2(1+a_{u}^{2})})]$$

the harmonic generation can be charactered by the coupling coefficients*

• Small signal gain in low gain FEL

$$g_n = -n \left(\frac{[J, J]_n}{[J, J]_1} \right)^2 (4\pi N\rho)^3 \left\langle \frac{\partial}{\partial x} \sin c^2 \frac{x}{2} \right\rangle_{\phi_0}$$

• nonlinear harmonic generation in high gain FEL

$$\frac{P_n}{\rho P_e} \Box \left(\frac{n^{n-1} [J, J]_n}{n! [J, J]_1} \right)^2 \left(\frac{P_{10}}{9 \rho P_e} \right)^n e^{n \frac{z}{L_g}}$$

harmonic saturation power:

$$\frac{P_{ns}}{P_{1s}} \approx \frac{(n+1)^n}{2(n*n!)^2} \left(\frac{[\mathbf{J},\mathbf{J}]_n}{[\mathbf{J},\mathbf{J}]_1}\right)^2$$

*Qi-ka Jia, "An analysis of nonlinear harmonic generation in high gain free electron laser" IEEE J.Quantum Electron. 43, 833 (2007)

the harmonic coupling coefficient with undulator deflection parameter

harmonic generation $\propto ([J,J]_n/[J,J]_1)^2$

,

For actual planar undulators

$$B_{u} = \sum_{m} B_{um} \sin(mk_{u}z) \qquad \vec{a}_{u} = \sum_{m} \hat{a}_{um} \cos(mk_{u}z)$$

m: all or part odd numbers, due to the symmetry of the magnetic structure

generally
$$B_{um} \ll B_{u1}$$
, $a_{um} = \frac{B_{um}}{mB_{u1}} a_{u1} \ll a_{u1}$

•Resonance condition

$$\lambda_{sn} = \frac{\lambda_u}{2n\gamma^2} (1 + \sum_m a_{um}^2) \qquad a_{um}^2 = \hat{a}_{um}^2/2, \ (rms)$$

Only the terms related with the fundamental are dominant therefore

$$z \Box \overline{z} - \{\frac{\xi_1}{k_s}\sin(2k_u\overline{z}) + \sum_{m\neq 1}\left[\frac{\xi_{m+1}}{k_s}\sin((m+1)k_u\overline{z}) + \frac{\xi_{m-1}}{k_s}\sin((m-1)k_u\overline{z})\right]\}$$

• the phase equation

 $\phi'' = \frac{2k_u}{\gamma^2} \sum_{n,l} k_{sn} a_{sn} a_{ul} \left\{ \cos[(nk_s + lk_u) z - n\omega_s t + \phi_l] + \cos[(nk_s - lk_u) z - n\omega_s t + \phi_l] \right\}$

substituting expression of z

中国科大同辐

$$\phi'' = \frac{2k_u}{\gamma^2} \sum_n k_{sn} a_{sn} a_{u1} f_n \operatorname{Re} e^{-i(n\phi + \varphi_{sn})}$$

$$f_n = \operatorname{Re} \sum_{l} \frac{a_{ul}}{a_{u1}} \left[e^{i(n-l)k_{u}\bar{z}} + e^{i(n-l)k_{u}\bar{z}} \right] e^{in \xi \sin(2k z_u)} \prod_{m \neq 1} e^{in \xi \sin((m-1)k_{u}z_u)} + \xi \sin((m-1)k_{u}z_u) \right]$$

In the exponential of f_n , many terms are small and oscillate fast, a average over undulator period will eliminate these small contribution terms.

•the *n*th harmonic optical field equation

$$\frac{d}{dz}\tilde{a}_{sn} \Box \frac{r_e n_e a_{u1} \lambda_{sn}}{\gamma} f_n \left\langle e^{-in\phi} \right\rangle$$

the modified coupling coefficient: $[J, J]_n \rightarrow f_n$

the third harmonic field case

the most important harmonic

$$B_u = B_{u1}\sin(k_u z) + B_{u3}\sin(3k_u z)$$

in this case:

$$z = \overline{z} - \frac{\zeta_1}{k_{s1}} \sin(2k_u \overline{z}) - \frac{\zeta_2}{k_{s1}} \sin(4k_u \overline{z}) \qquad \xi_1 = \frac{a_{u1}(a_{u1} + a_{u3})}{2(1 + a_{u1}^2 + a_{u3}^2)} , \ \xi_2 = \frac{a_{u1}a_{u3}}{4(1 + a_{u1}^2 + a_{u3}^2)}$$

We have

$$f_{n} = \operatorname{Re}\sum_{l} \frac{a_{ul}}{a_{u1}} \left[e^{i(n-l)k_{u}\overline{z}} + e^{i(n+l)k_{u}\overline{z}} \right] \sum_{h_{1}} \sum_{h_{2}} J_{h_{1}}(n\zeta_{1}) J_{h_{2}}(n\zeta_{2}) e^{i(h_{1}+2h_{2})2k_{u}\overline{z}}$$

$$n, l=1,3.$$

Taking average over undulator period

the dominant product term in the sum is that with $h_1 + 2h_2 = -(n \pm l)/2$

$$f_{n} = \sum_{l} \frac{a_{ul}}{a_{u1}} \{ \sum_{\substack{h_{1},h_{2}, \\ h_{1}+2h_{2}=-\frac{n+l}{2}}} J_{h_{1}}(n\zeta_{1})J_{h_{2}}(n\zeta_{2}) + \sum_{\substack{h_{1},h_{2}, \\ h_{1}+2h_{2}=-\frac{n-l}{2}}} J_{h_{1}}(n\zeta_{1})J_{h_{2}}(n\zeta_{2}) \}$$

for the small arguments, only zero order Bessel function contribute Because $\zeta_2 \ll \zeta_1 \ll 1/2$, it can be further simplified by taking $h_2=0$:

the modified coupling coefficient:

$$\begin{bmatrix} J, J \end{bmatrix}_{1} \rightarrow f_{1} = J_{0}(\zeta_{2}) \{ \begin{bmatrix} J_{0}(\zeta_{1}) - J_{1}(\zeta_{1}) \end{bmatrix} + \frac{a_{u3}}{a_{u1}} \begin{bmatrix} J_{2}(\zeta_{1}) + J_{1}(\zeta_{1}) \end{bmatrix} \}$$
$$\begin{bmatrix} J, J \end{bmatrix}_{3} \rightarrow f_{3} = J_{0}(3\zeta_{2}) \{ \begin{bmatrix} J_{2}(3\zeta_{1}) - J_{1}(3\zeta_{1}) \end{bmatrix} + \frac{a_{u3}}{a_{u1}} \begin{bmatrix} J_{0}(3\zeta_{1}) - J_{3}(3\zeta_{1}) \end{bmatrix} \}$$

3rd harmonic generation $\propto (f_3 / f_1)^2$

enhancement of the 3rd harmonic

$$R_3 = \left(\frac{f_3 / f_1}{[J, J]_3 / [J, J]_1}\right)^2$$

numerical calculation result

Modified coupling coefficient due to 3rd harmonic magnetic field

 $3^{\rm rd}$ harmonic generation $\propto (f_3/f_1)^2$

the effect of B_3 on FEL harmonic generation

The enhancement of the FEL 3rd harmonic radiation

$$R_{3} = \left(\frac{f_{3} / f_{1}}{[J, J]_{3} / [J, J]_{1}}\right)^{2} \text{ argument:} \begin{array}{l} a_{u1} \\ a_{u} \end{array} \text{ has a little difference:} \\ a_{u} \end{array}$$

$$a_{u}^{2} = a_{u1}^{2} [1 + (\frac{a_{u3}}{a_{u1}})^{2}] \Longrightarrow \text{ same resonant wavelength}$$

NSRL 中国科大同福

- 3rd harmonic emission can be distinctly enhanced by 3rd harmonic field with an opposite sign to fundament field
- the larger magnetic harmonics fractions

=> the larger radiation enhancement,

$$\left| B_{u3} / B_{u1} \right| \uparrow \Longrightarrow a_{s3} \uparrow$$

•fundamental radiation has been less affected

• for given
$$B_{u3} / B_{u1}$$

the weaker $a_u \implies$ larger enhancement of a_{s3}

With
$$B_{u3} / B_{u1} = -0.3$$
:
the 3rd-harmonic radiation are enhanced ~40%
maximally doubled for $K(=\sqrt{2}a_u) \sim 1$

SUMMARY

 effects of undulator harmonics field on the harmonic coupling coefficients and FEL harmonic generation are analysed
 For the case 3rd magnetic field present, analytical expression is given for coupling coefficients, is easy to calculate and can be used to predict the enhancement of FEL HG

- 3^{rd} emission increase with 3^{rd} magnetic field that has an opposite sign to B_1
- fundamental emission has been less affected.
- next work: further study by simulation

ACKNOWLEDGE

Work supported by the the National Nature Science Foundation of China under Grant No. 10975137

REFERENCES

- [1] W.B.Colson, IEEE, J. Quantum Electron, vol.QE-17,pp.1417-1427, 1981
- [2] R. Bonifacio, L. De Salvo and P. Pierini Nucl. Instr. and Meth. A vol.293, pp627-629,1990
- [3] H.P.Freund, S.G.Biedron, and S.V.Milton, Nucl. Instrum. Methods Phys.Res. Sect. A vol.445,te pp53-58,2000
- [4] Z.Huang, K.-J.Kim, Phys.Rev.E vol.62,pp.7295-7308,2000; Nucl. Instrum. Methods Phys.Res. Sect. A vol.475, pp.112-117,2001
- [5] M.J. Schmitt and C.J. Elliott, IEEE J. Quantum Electron.QE-23 (1987) 1552.
- [6] M. Asakaw *et al.* Nucl. Instr. and Meth. in Phys. Res. A 358 (1995) 399-402, A 375 (1996) 416-319
- [7] Qi-ka Jia, Proceedings of IPAC10, WEPD033/3165-3167
- [8] Qi-ka Jia, PAC09-WE5RFP088
- [9] Qi-ka Jia, IEEE J.Quantum Electron. 43, 833 (2007)

