

# Status of the PSI X-Ray Free Electron Laser "SwissFEL"

**Terry Garvey** 

Paul Scherrer Institute – Department of Large Research Infrastructures,

for the PSI SwissFEL Team

32<sup>nd</sup> International Free Electron Laser Conference, Malmö, August 23rd, 2010.



| SwissFEL key parameters |              |  |  |  |
|-------------------------|--------------|--|--|--|
| Wavelength range        | 1 Å - 70 Å   |  |  |  |
| Pulse duration          | 1 fs - 20 fs |  |  |  |
| e⁻ Energy               | 5.8 GeV      |  |  |  |
| e⁻ Bunch charge         | 10-200 pC    |  |  |  |
| Repetition rate         | 100 Hz       |  |  |  |

### **Site constraints** Power consumption < 5 MW Overall length < 900m

We would like to build 1st phase of SwissFEL 2012-2015



The research capabilities of an X-ray FEL would be an ideal complement to PSI's existing synchrotron light source and spallation neutron source research facilities.

SwissFEL is to be built as a national facility in a "small" country.

Total cost must fit within a reasonable financial boundary.



- Lowest beam energy technically possible
- Small period undulators with low K values
- Low  $q_B$  charge
- Normal conducting linac technology

# **SwissFEL Science Case**





To keep the tight schedule for SwissFEL the baseline design has to use state of the art technical solutions for all key components. These solution consist of:

- An injector based on a 3 GHz RF gun with laser driven Cu-photocathode and 3 GHz booster.
- Normal conducting 5.8 GeV linear accelerator with 5.7 GHz frequency, 26 MV/m accelerating gradient, SLED pulse compression and solid state klystron modulator technology.
- Two magnetic bunch compressors with 12 GHz harmonic cavity on BC1 to reach fs scale bunch length.
- •Undulator design for ARAMIS hard x-ray FEL (1-7 Å) uses planar, in-vacuum, room temperature, permanent magnet arrays with variable gap, 15 mm period length and nominal *K* value of 1.2.
- •Undulator design for ATHOS soft x-ray FEL (7-70 Å) uses permanent magnet APPLE II undulators with 40 mm period, allowing full control of photon beam polarization.
- A high field / short pulse THz pump source in the experimental area driven by a small dedicated electron accelerator.

## SwissFEL layout



| Aramis: | 1-7 Å hard X-ray SASE FEL,<br>In-vacuum , planar undulators with variable gap.                                              |  |  |
|---------|-----------------------------------------------------------------------------------------------------------------------------|--|--|
| Athos:  | 7-70 Å soft X-ray FEL for SASE & Seeded operation .<br>APPLE II undulators with variable gap and full polarization control. |  |  |

**D'Artagnan:** FEL for wavelengths above Athos, seeded with an HHG source. Besides covering the longer wavelength range, the FEL is used as the initial stage of a High Gain Harmonic Generation (HGHG) with **Athos** as the final radiator.





• Fast extraction at 3.4 GeV allows to serve 2 undulator lines simultaneously at full repetition rate



# SwissFEL e<sup>-</sup> beam parameters

| Design Parameters              | nominal operation<br>modes |                |  |
|--------------------------------|----------------------------|----------------|--|
|                                | long<br>pulse              | short<br>pulse |  |
| single bunch charge (pC)       | 200                        | 10             |  |
| beam energy for 1 Å (GeV)      | 5.8                        | 5.8            |  |
| core slice emittance (mm.mrad) | 0.43                       | 0.18           |  |
| projected emittance (mm.mrad)  | 0.65                       | 0.25           |  |
| rms slice energy spread (keV)  | 350                        | 250            |  |
| Relative energy spread (%)     | 0.006                      | 0.004          |  |
| peak current at undulator (kA) | 2.7                        | 0.7            |  |
| bunch length rms (fs)          | 30                         | 6              |  |
| bunch compression factor       | 125                        | 240            |  |
| repetition rate (Hz)           | 100                        | 100            |  |
| number of bunches / pulse      | 2                          | 2              |  |
| bunch spacing (ns)             | 50                         | 50             |  |



# SwissFEL photon beam parameters

|                                                                                                             | nominal operation<br>mode |                      |  |
|-------------------------------------------------------------------------------------------------------------|---------------------------|----------------------|--|
| FEL parameters ARAIVIIS                                                                                     | long                      | short                |  |
| (for 5.8GeV operation)                                                                                      | pulse                     | pulse                |  |
| undulator Period (mm)                                                                                       | 15                        | 15                   |  |
| undulator Parameter                                                                                         | 1.2                       | 1.2                  |  |
| energy Spread (keV)                                                                                         | 350                       | 250                  |  |
| laser Wavelength (Å)                                                                                        | 1                         | 1                    |  |
| maximum saturation length (m)                                                                               | 50                        | 50                   |  |
| saturation Pulse Energy (µJ)                                                                                | 60                        | 3                    |  |
| effective Saturation Power (GW)                                                                             | 2                         | 0.6                  |  |
| rms photon pulse length at 1 Å (fs)                                                                         | 13                        | 2.1                  |  |
| number of photon at 1 Å (×109)                                                                              | 31                        | 1.7                  |  |
| bandwidth (%)                                                                                               | 0.03                      | 0.04                 |  |
| <b>peak brightness</b><br>(# photons·mm <sup>-2</sup> ·mrad <sup>-2</sup> ·s <sup>-1</sup> /0.1% bandwidth) | <b>3·10</b> <sup>32</sup> | 1·10 <sup>32</sup>   |  |
| average brightness<br>(# photons·mm <sup>-2</sup> ·mrad <sup>-2</sup> ·s <sup>-1</sup> /0.1% bandwidth)     | 1·10 <sup>21</sup>        | 5.7·10 <sup>18</sup> |  |



# Start2End simulation with ASTRA & ELEGANT





# SwissFEL Milestones



2010 250 MeV Injector facility



# SwissFEL Schedule

| Schedule SwissFEL Phase 1 & 2 |                                                                                                     |                             |                                |                                          |                             |                                        |                   |                               |           |                    |                    |
|-------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------|------------------------------------------|-----------------------------|----------------------------------------|-------------------|-------------------------------|-----------|--------------------|--------------------|
| <b>B</b> 8 <b>D</b>           | R&D and proto                                                                                       | otyping of large n          | umber compone                  | nts (RF systems,                         |                             |                                        |                   |                               |           |                    |                    |
| K&D                           | R&D R&D and prototyping of special components (special instrumentation, injector, feedback,) R&D ar |                             |                                |                                          |                             |                                        | nd prototyping p  | hase 2                        |           |                    |                    |
| Accelerator                   | Component procurement accelerator and ARAMIS FEL                                                    |                             |                                |                                          |                             |                                        |                   | Procureme<br>ATHOS FE         | ent<br>EL |                    |                    |
| Accelerator                   | Installation accelerator and<br>ARAMIS FEL                                                          |                             |                                |                                          |                             | un co                                  | oning             |                               |           |                    |                    |
| Buildings                     | Planni                                                                                              | ing and building p          | permits                        | Buildings and<br>tunnel<br>construction  | Technical<br>infrastructure |                                        |                   | accelerator and<br>ARAMIS FEL |           | Installat<br>ATH09 | Commissic<br>ATHOS |
| Year                          | 2009                                                                                                | 2010                        | 2011                           | 2012                                     | 2013                        | 2014                                   | 2015              | 2016                          | 2017      | 20                 | )18                |
|                               | <b>^</b>                                                                                            | ſ^ <b>^</b> ′               | <u> </u>                       |                                          | •                           | 1                                      |                   | 1                             |           |                    | ↑                  |
| Milestones                    | Science Case Re<br>Report ET                                                                        | equest to<br>H council Repo | tual Request to<br>n parlament | Technical Be<br>Design Cor<br>Report Cor | egin civil E<br>Instruction | uildings and<br>nfrastructure<br>ready | First be<br>phase | am Start user<br>1 operation  |           | Fir                | st beam<br>hase 2  |

# SwissFEL preparatory R&D, I



# SwissFEL 250 MeV Injector Test Facility







# First Beam from RF Gun SwissFEL Injector

### March 12, 2010, ~12h10



### YAG screen image



# **Commissioning phases**

Phase 1: Electron source and diagnostics



- · Characterization of the electron source
- Installation of remaining machine behind shielding wall

# Phase 2: Phase 1 + (some) S-band acceleration

- August 2010 to December 2010 (official injector inauguration 24 August)
- Emittance damping in S-band booster (invariant envelope)
- Jaguar (Nd:YLF) laser

# Phase 3: The full machine

- End of 2010 / early 2011 (installation bunch compressor and X-band cavity)
- Pulsar (Ti:Sapph) laser













### Collaboration between PSI - CERN - FERMI @ ELETTRA Klystron from SLAC

| Frequency (MHz)                   | 11991.65      |
|-----------------------------------|---------------|
| Number of cells                   | 72            |
| Cell phase advance                | 5/6π          |
| Iris aperture range (mm)          | 4.993 - 4.107 |
| Active length (m)                 | 0.75          |
| Nominal decelerating voltage (MV) | 29            |













### Linear accelerator

PAUL SCHERRER INSTITUT



Linear space requirements

| Total facility length             | 715 m        |                          |
|-----------------------------------|--------------|--------------------------|
| Experiment halls                  | 50 m         |                          |
| Photon beam transport             | 100 m        |                          |
| Other beam line elements          | 273 m        |                          |
| ARAMIS string of undulators       | 60 m         |                          |
| Active length C-band acceleration | 208 m        | (1/4 of building length) |
| Active length S-band acceleration | <b>2</b> 4 m |                          |

 $\Rightarrow$  No strong motivation for very high gradients

⇒ C-band instead of S-band is motivated by power consumption and number of RF stations !

# SwissFEL Linac Module

New high power test stand for linac module in prepration. Procurement of C-band klystron in progress



# C-band pulse compression with BOC







# Main linac C-band RF structures

Different cell geometries being studied.

PSI will design, will build and test 80 cm prototypes. Milestone: Complete first power test before end 2011.

Based on this experience design and procurement strategy will be defined.







# SwissFEL Frequencies in MHz

|            |                |                                              |                                              | SwissFEL<br>frequencies      |
|------------|----------------|----------------------------------------------|----------------------------------------------|------------------------------|
|            |                | "European"                                   | "American "                                  | f <sub>b</sub> =142.8        |
|            | S-Band         | 2997.912                                     | 2856                                         | 2998.8 (21xf <sub>b</sub> )  |
| Injector   |                | most parts already<br>delivered              |                                              |                              |
| Injector   | X-Band         | 11991.648                                    | 11424                                        | 11995.2 (84xf <sub>b</sub> ) |
|            | (4 x S-band)   | most parts on order, could still be changed  |                                              |                              |
| Main linac | C-Band         | 5998.524                                     | 5712                                         | 5712 (40xf <sub>b</sub> )    |
|            | (2 x S-band ?) | requires development of<br>klystron with PSI | klystron available<br>almost "off the shelf" |                              |
|            |                | presently the only<br>customer               | Spring8, KEK, LNF<br>are already             |                              |

Common sub-harmonic 142.8MHz, minimum bunch spacing 7 ns

# SwissFEL preparatoy R&D, III

PAUL SCHERRER INSTITUT



# **Undulator Strategy**





## **Undulator Development**

Mechanical design of frame, choice of materials etc... all presently under study.





# Building lay-out





# Linac cross section



# SwissFEL buildings



# SwissFEL CDR



Official publication 24th August 2010 for Inauguration ceremony of 250 MeV Injector

# SwissFEL posters at this conference

- S. Reiche Coherence properties MOPC20
- C. Vicario Photocathode drive laser WEPB14
- B. Keil Injector BPM commisioning WEPB15
- N. Milas The Switchyard WEPB16
- B. Beutner Tolerance studies WEPB17
- M. Aiba Orbit correction scheme THPA08



# Thank you for your attention !