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Abstract 
The nonlinearities of the RF fields and the dispersion 

sections can be corrected with a higher harmonic RF 
module. In this paper we present an analytical solution for 
nonlinearity correction up to the third order in a 
multistage bunch compression and acceleration system 
without collective effects. A more general solution for a 
system with collective effects (space charge, wakefields, 
CSR effects) can be found by iterative tracking procedure 
based on this analytical result.  We apply the developed 
formalism to study two stage bunch compression in 
FLASH (see a companion paper [1]). Analytical 
estimations of RF tolerances are given. 

INTRODUCTION 
 Free-electron lasers require an electron beam with high 
peak current and low transverse emittance. In order to 
meet these requirements several bunch compressors are 
usually planned in the beam line [2], [3]. 
 The nonlinearities of the radio frequency (RF) fields 
and of the bunch compressors (BC’s) can be corrected 
with a higher harmonic RF system [4]. An analytical 
solution for cancellation of RF and BC’s nonlinearities 
for a one stage bunch compressor system was presented in 
[4]. The second order treatment of multistage bunch 
compressor systems was done in [5], where the difficulty 
to extend the third-order analysis to multistage systems 
was pointed out as well. 
 In this paper we present, for the first time, an analytical 
solution for the nonlinearity correction up to the third 
order in a multistage bunch compression and acceleration 
system without collective effects for an arbitrary number 
of stages. A more general solution for a system with 
collective effects (space charge forces, wakefields, a 
coherent synchrotron radiation (CSR) within the chicane 
magnets) can be found by an iterative tracking procedure 
based on this analytical result.  We apply the developed 
formalism to study the two stage bunch compression 
scheme at FLASH [2] (see a companion paper [1]). The 
analytical estimations of RF tolerances are given for two 
and three stage bunch compression as well. 

ANALYTICAL SOLUTION OF 
MULTISTAGE BUNCH COMPRESSION 

PROBLEM WITHOUT SELF-FIELDS 

Problem Formulation 
 Let us consider the transformation of the longitudinal 
phase space distribution in a multistage bunch 
compression and accelerating system shown in Fig.1.  
The system has N  bunch compressors ( 1BC ,…, BCN ) 
and N  accelerating modules ( 1M ,…, MN ). The first 

module consists of the fundamental harmonic module 
1,1M  and of the higher harmonic module 1,M n   placed as 

shown in Fig. 1. 
 The energy changes in accelerating modules Mi , 1,1M   
can be approximated as 
 1,1 1,1 1,1( ) cos( )E s V ks ϕΔ = + ,  
 1( ) cos( ( ) )i i i iE s V ks s ϕ−Δ = + , 1i > , 
where iϕ  is a phase, iV  is the on crest voltage and k  is a 
wave number.  
 The energy change in the high harmonic module is 
given by 
 1, 1, 1,( ) cos( )n n nE s V nks ϕΔ = + . 
The relative energy deviations in bunch compressors read 
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The transformation of the longitudinal coordinate in 
compressor BCi  can be approximated by the expression 
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Figure 1: The multistage bunch compression system with 

the high harmonic module at the first stage. 
 
 In order to simplify the notation in the equations below 
we introduce a new function ( ) ( )i iZ s s s′≡ and the inverse 
bunch compression factors 
 (0)i iZ s′≡ , (0)i iZ s′ ′′≡ , (0)i iZ s′′ ′′′≡ .   
 Let us suggest that we know the desired energies 0{ }iE  
and the desired compression factors 0{ }iZ  in all bunch 
compressors. For the linear compression in the middle of 
the bunch we would like to have the first and the second 
derivatives of the global compression equal to zero: 

0NZ ′ = , 0NZ ′′ = . In general case they could take arbitrary 
values 0

NZ ′  and 0
NZ ′′ .  
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 In order to find 2 2N +  settings of RF parameters 1,1V , 

1,1ϕ , 1,nV , 1,nϕ , { , }i iV ϕ , 2,3,...,i N= , of the accelerating 
modules we have to solve the non-linear system of 
2 2N +  equations 
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0 0

(0) 0, 1,..., ,

(0) , 1,..., ,

(0) , (0) .

i

i i

N N N N

i N

s Z i N

s Z s Z

δ = =⎧
⎪ ′ = =⎨
⎪ ′′ ′ ′′′ ′′= =⎩

   (1) 

Analytical Solution of the Multistage Bunch 

 In order to simplify the form of the solution and to 
generalize it for arbitrary number of stages we split 
system (1) in two independent problems. 
 To simplify the notation let us introduce the new 
variables  
 1,

1, 1, 1,
ni

n n nX iY V e ϕ+ = , 1,1
1,1 1,1 1,1

iX iY V e ϕ+ = , 

 ii
i i iX iY V e ϕ+ = , 1i > , 

 ( )2 ,..., T
NX X=X , ( )2 ,..., T

NY Y=Y  . 
Then the first problem for  2 1N +  variables reads 
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where 1 2 3( , , )Tα α α=α , 1 (0)
i

i is
δα ∂

=
∂

, is an unknown 

vector which describes up to the third order the energy 
curve immediately after the high harmonic module. If we 
know the solution of system (2) then we can formulate the 
second problem for the RF parameters in module 1M . 
 The second problem for 4 variables reads 
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The last problem can be rewritten as a linear system 
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If the initial values 0
0E , 0 (0)δ ′ , 0 (0)δ ′′ , 0 (0)δ ′′′  and the 

variables iα , 1, 2,3i = , are known then the solution of  
Eq. (4) reads 
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 The main difficulty which remains is to find the 
solution of non-linear system (2). In order to write 
explicitly the last two equations in system (2) we need to 
find the first three derivatives of functions ( )is s  and 

( )i sδ . In the following we omit argument s . In this 
simplified notation the first three derivatives at 0s =  read 
 1 56i i i is s r δ−′ ′ ′= − ,  ( )2

1 56 562i i i i i is s r tδ δ−′′ ′′ ′′ ′= − − , (6) 
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1 56 56 566 6i i i i i i i i is s r t uδ δ δ δ−′′′ ′′′ ′′′ ′ ′′ ′= − − − ,  1,...,i N= , 
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 1 1δ α′ ≡ , 1 2δ α′′≡ , 1 3δ α′′′≡ . 
 Let us describe the solution of system (2) step by step. 
At the beginning, from the first N  equations, 

(0, ) 0iδ =X , we can easily find the components of vector 
X : 
 0 0

1i i iX E E −= − , 2,...,i N= .   (7) 
From the next 1N +  equations, 0

1(0, , , )i is Zα′ =X Y , 
1,...,i N= , we find the components of vector Y  and the 

energy chirp 1 1α δ ′≡  before 1BC  : 
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From equation 0
1 2(0, , , , )N Ns Zα α′′ ′=X Y  we can find 

parameter 2α . This equation can be rewritten as a system 
of linear difference equations (see Eqs. (5), (6)) 
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 It is easy to check that the solution of the problem (10) 
can be found as 
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Compression Problem 
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where  Nx  and Nx  are solutions of the particular 
homogeneous and inhomogeneous problems 
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The unknowns Nx  and Nx   can be found 
straightforwardly from the recurrence relations (12). 
 Finally, the last equation, 0(0, , , )N Ns Z′′′ ′′=X Y α , allows 
to find 3α . This equation can be rewritten in a system of 
linear difference equations like (10) with some of the 
coefficients being different: 
 i ix s′′′≡ , 0

i i iy E δ ′′′≡ ,  0 0
N Nx Z ′′≡  

 ( )3
56 566 6i i i ib t uδ δ δ′ ′′ ′= − − ,  

 3 3 2 2
1 1 13i i i i i ie k Z Y k Z Z X− − −′= − .    

 Hence, we have found a unique solution of the original 
problem (1) for any number of stages N .  The explicit 
form of the solution for two and three stage bunch 
compression problem can be found in [1], [6]. 

Analytical stimation of RF olerances 
 The final bunch length and the peak current are 
sensitive to the energy chirp and thus to the precise values 
of the RF parameters. Let us calculate a change of the 
compression due to a change of the RF parameters.  
 To simplify the notation we define 

 0
1 0 1,1 1,3X E X X= + + , 1

1 1,1 1,33Y Y Y
k
ξ

= − + + ,  

where 1 0 (0)s Eξ = ∂  is an initial energy chirp. 
Additionally we introduce RF parameter  vectors 
  ( , )T

i i iX Y≡v , 0 0 0( , )T
i i iX Y≡v , ( , )T

i i iX YΔ ≡ Δ Δv , 
  0

i i iX X X= + Δ , 0
i i iY Y Y= + Δ , 

where symbol “ 0 ” stays for the RF parameters as 
obtained in the previous section from the analytical 
solution. 
 In order to obtain a stable bunch compression and to 
estimate the acceptable change in the RF parameters we 
require that the relative change of compression 1

i iC Z −≡  
at 0s =  is smaller than Θ  
  ( )0 0( ) ( ) ( )i j i j i jC C C− ≤ Θv v v . 

Neglecting the second order terms the last inequality can 
be rewritten in the form 0( ) ( )

jj i j i jC CΔ ⋅∇ ≤ Θvv v v , 

where term ( ),
j j j

T

i X i Y iC C C∇ = ∂ ∂v  means the gradient of 

the compression in two dimensional space ( , )i iX Y . 
Applying the Cauchy–Bunyakovsky inequality we obtain 
the admissible relative change in RF parameters ( , )i iX Y  

 ( ) ( )0 0
jj j i j iZ V ZΔ ≤ Θ ∇vv v , ( , )T

i i iX YΔ ≡ Δ Δv . 

 Hence, in order to estimate the RF tolerances we need 
to estimate the partial derivatives relative to the RF 
parameters (see [6] for the details).  

  It is shown in [6] that the lengths of the gradient 
vectors of the compression immediately after 
compressor 2BC  are given by relations 
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If we neglect the non-linear compression terms and use 
Eqs. (7)-(9) then we can write the simple estimations 
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 Finally, let us consider a question about the best 
compression scenario from the point of view of the best 
possible tolerance in the booster 1,1M . We consider the 
two stage bunch compression scheme and use the 
approximate equation (14) to find the best value of 1Z  for 

the fixed value of 2Z . From the condition 
1 1,1 2 0Z Z∂ ∇ =v  

it is easy to find that the optimal value of the compression 
in the first bunch compression reads 

  562 1 561 2 2
1

561 562 2 1( )
r E r E Z

Z
kr r E E
− −

=
−

.   (15) 

In a companion paper [1] we apply the developed 
formalism to study the bunch compression schemes at 
FLASH and the European XFEL. 
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