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Abstract

In this paper we describe a measurement technique ca-
pable of resolving femtosecond X-ray pulses from XFEL
facilities. Since these ultrashort pulses are themselves the
shortest event available, our measurement strategy is to let
the X-ray pulse sample itself. Our method relies on the
application of a ”fresh” bunch technique, which allows for
the production of a seeded X-ray pulse with a variable de-
lay between seed and electron bunch. The shot-to-shot av-
eraged energy per pulse is recorded. It turns out that one
actually measures the autocorrelation function of the X-ray
pulse, which is related in a simple way to the actual pulse
width. For implementation of the proposed technique, it
is sufficient to substitute a single undulator segment with
a short magnetic chicane. The focusing system of the un-
dulator remains untouched, and the installation does not
perturb the baseline mode of operation. We present a fea-
sibility study and we make exemplifications with typical
parameters of an X-ray FEL.These proceedings are based
on the article [1], to which we address the interested
reader for further information and references.

INTRODUCTION AND METHOD

Figure 1: Experimental layout for ultra-short X-ray pulse-
measurement using ”fresh” bunch technique.

The measurement of X-ray pulses on the femtosecond
time scale constitutes an unresolved problem. It is pos-
sible to create sub-ten femtosecond X-ray pulses from
XFELs, but not to measure them. In fact, conventional
photodetectors and streak-camera detectors do not have
a fast enough response time to characterize ultrashort ra-
diation pulses. For example, the rise time of the best
streak-cameras approaches 100 fs, far too slow to resolve
femtosecond pulses. Special measurement techniques are
needed. In this paper we propose a new method for the

measurement of the duration of femtosecond X-ray pulses
from XFELs. The method is based on the measurement of
the autocorrelation function of the X-ray pulses. The setup
in Fig. 1 may be used to this purpose. The electron bunch
enters the first part of the baseline undulator and produces
SASE radiation with ten MW-level power. After the first
part of the undulator, the electron bunch is guided through a
short magnetic chicane whose function is both, to wash out
the electron bunch modulation, and to create the necessary
offset to install an X-ray optical delay line. The chicane is
short enough to be installed in the space of a single XFEL
segment, as shown in Fig. 2, and does not perturb the fo-
cusing structure of the machine. The optical delay line is
sketched in Fig. 3.

Figure 2: Installation of a magnetic delay in the baseline
XFEL undulator.

Figure 3: X-ray delay optical system.

After the chicane, the electron beam and the X-ray radi-
ation pulse produced in the first part of the undulator en-
ter the second part of undulator, which is resonant at the
same wavelength. In the second part of the undulator the
first X-ray pulse acts as a seed and overlaps to the lasing
part of electron bunch. Therefore, the output power rapidly
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Figure 4: X-ray intensity autocorrelation measurement.

grows up to the GW-level. First and second undulator parts
are identical and operate in the linear FEL amplification
regime. The relative delay between electron bunch and
seed X-ray pulse can be varied by the X-ray optical delay
line installed within the magnetic chicane, as illustrated in
Fig. 4. Within the 1D FEL theory, which is not too far from
reality for the SASE X-ray case with a large diffraction pa-
rameter, one can write the shot-to-shot averaged power in
the pulse from the first part of the undulator as

〈P (t)〉 = P0 exp [2LwRe(Λ(t))] (1)

where P0 is the equivalent shot-nose power, Lw = 36 m (6
cells) is the length of the two identical undulator parts and
Re(Λ(t)) is the time-dependent field growth-rate. Simi-
larly, the shot-to-shot averaged power in the pulse from
the second part of the undulator, which is seeded with
〈P (t − τ)〉, τ being the variable delay, can be written as

〈P2(t, τ)〉 = 〈P (t − τ)〉 exp [2LwRe(Λ(t))] =
1
P0

〈P (t − τ)〉 〈P (t)〉 . (2)

The subsequent measurement procedure consists in record-
ing the shot-to-shot averaged energy per pulse at the exit of
the second part of the undulator as a function of the rel-
ative delay between electron bunch and seed X-ray pulse,
with the help of an integrating photodetector. This yields
the autocorrelation function

A(τ) =
∫ ∞

−∞
dt 〈P (t − τ)〉 〈P (t)〉 . (3)

Autocorrelation measurements are well known methods in
laser physics. Early on, it was realized that the only event
fast enough to measure an ultrashort pulse is the pulse it-
self. A number of schemes have been developed over the
past decades to better measure ultrashort laser pulses. Most
of them have been experimental implementations and vari-
ations of autocorrelators, i.e. devices capable of measuring
the autocorrelation function of a given pulse, Eq. (3). Our

Figure 5: Experimental layout for measuring the optical
pulse intensity versus time.

scheme actually provides a device capable of performing
an intensity autocorrelation measurement.

Note that, in order to perform intensity autocorrelation
measurements, one should insert a nonlinear element into
an interferometer. In ultrashort laser physics, the most
common approach in the visible range involves second-
harmonic generation (SHG), in which a nonlinear crystal is
used to generate light at twice the input optical frequency
(see Fig. 5). The measurement procedure is to record the
time-averaged second harmonic pulse energy as a function
of the relative delay τ between the two identical versions
of the input pulse. Due to nonlinearity, the total energy in
the second-harmonic pulse is greater when the two pulses
incident on the nonlinear crystal overlap in time. There-
fore, the peak in the second-harmonic power plotted as a
function of τ contains information about the pulse width.

Similarly, here we assumed that we dispose of an ensem-
ble of identical pulses, so that the autocorrelation function
can be constructed from a large number of energy measure-
ments taken for a different delay parameter τ . The mea-
sured energy is the sum of a constant background term due
to startup from shot noise from each part of the undulator,
and of the intensity autocorrelation term, which arises from
the interaction of the delayed electron bunch and the seed
SASE pulse from the first part of undulator. Due to high-
gain FEL amplification in the second part of the undulator,
the total energy in the X-ray pulse at the exit of the setup
is much higher when the seed SASE pulse and the electron
bunch overlap in time. This means that we effectively deal
with a background-free intensity autocorrelation function
measurement. Therefore, the peak in the shot-to-shot av-
eraged energy of the X-ray pulse at the setup exit, plotted
as a function of τ , contains information about the averaged
X-ray pulse width.

One immediately recognizes the physical meaning of the
autocorrelation function. The Fourier transform of the au-
tocorrelation function, Ā(ω), is related to the Fourier trans-
form of the signal function W (ω), i.e. to the Fourier Trans-
form of the intensity vs time, by Ā(ω) = |W (ω)|2. An
autocorrelation function is always a symmetric function.
Thus, Ā(ω) is a real function, consistent with a symmetric
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Units Short pulse mode
Undulator period mm 35.6
I and II stage length m 35.9
Segment length m 6.00
Segments per stage - 6
K parameter (rms) - 2.9805
β m 27
Wavelength nm 0.15
Energy GeV 17.5
Charge nC 0.025
Bunch length (rms) μm 1.0
Normalized emittance mm mrad 0.4
Energy spread MeV 1.5

function in the time domain. The intensity autocorrelation
function assumes its maximum value at τ = 0. Moreover,
the autocorrelation function is an even function of τ , inde-
pendently of the symmetry of the actual pulse. Therefore,
one cannot uniquely recover the pulse intensity profile from
the knowledge of the autocorrelation function only. This
is also understandable from the fact that correlation tech-
niques provide the possibility to measure the modulus of
the Fourier transform of the signal function, while infor-
mation about its phase is missing.

However, since the pulses exhibit no overlap for delays
much longer than the pulse width, the autocorrelation func-
tion goes to zero for values of τ larger than the pulse width.
Therefore, the width of the correlation peak gives informa-
tion about the pulse width. One can estimate the FWHM of
the radiation pulse from the knowledge of the autocorrela-
tion function if one assumes a specific pulse shape. Then,
the FWHM can be found by dividing the intensity autocor-
relation FWHM by a deconvolution factor, which is spe-
cific for a given shape. If one deals with smoothly varying
pulse shapes, the deconvolution factor is about 1.5 and the
variation in the deconvolution factor is of the order of 10%
only. Therefore, the pulse duration can be approximatively
obtained from the knowledge of the FWHM of the inten-
sity autocorrelation function, even though the pulse shape
remains unknown.

In the next Section we will present a feasibility study of
our method, based on simulations with the code Genesis
1.3, with the help of parameters in Table 1. We further dis-
cuss an alternative method for radiation pulse width mea-
surement which is based on simpler hardware, but should
rely on trace retrieval algorithms to compute the full au-
tocorrelation trace from a-priori knowledge of the electron
bunch properties.

FEASIBILITY STUDY

First we let the electron beam through the first part of the
undulator, which is 36 m long and is resonant at 0.15 nm.
A picture of a single-shot beam power distribution after the
first part of the undulator is shown. If one would make an

average over many shots, one would obtain 〈P (t)〉 given in
Eq. (1).

Figure 6: SASE beam power distribution (single shot) after
the first undulator part (36 m-long).

After the first part of the undulator, the electron beam
is delayed relatively to the photon beam, of a continuously
tunable temporal interval τ , as illustrated in Fig. 4. More-
over, the microbunching produced in the first part of the
undulator is washed out. Energy spread and energy loss
induced during the linear process in the first part of the un-
dulator are taken into account, but they are small, and the
electron beam can still undergo the SASE process in the
second part of the undulator. At this point, the radiation
pulse P2(t, τ) is produced. A picture of a single-shot beam
power distribution after the second part of the undulator is
shown in Fig. 7. If one would make an average over many
shots of this figure, one would obtain 〈P2(t, τ)〉 given in
Eq. (2). We performed averaging over 10 shots for each
value of τ .

Figure 7: Beam power distribution (single shot) after the
second part of the undulator (36 m-long)single shot. The
SASE seeded power distribution in this plot is obtained
with a fresh beam and for zero delay.

As discussed before, in order to obtain the intensity auto-
correlation function, after having calculated 〈P2(t, τ)〉 for

Table 1: Parameters for the Short Pulse Mode used in this
Paper
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different values of τ we need to integrate it in time. The
result is the average energy in the pulse at the exit of the
second undulator as a function of τ calculated with a 3D
FEL code, i.e. the autocorrelation trace, which is shown in
Fig. 9 (black circles). Averaging have been performed over
ten shots.

As shown before, in the 1D approximation, the autocor-
relation trace calculated in this way should just coincide
with the autocorrelation of the average power (i.e. the gain
profile) for the first undulator stage. We can independently
calculate such gain profile. Namely, instead of consider-
ing the start-up from noise in the first undulator, we can
simulate the case when a constant laser power is fed at the
entrance of the FEL and no shot noise is considered. As a
result, we obtain 〈P (t)〉, the ensemble average of the power
distribution after the first undulator for startup from shot
noise, i.e. the gain envelope. This result is plotted in Fig.
8 (black circles). The expected functional dependence of
〈P 〉 on time is given in Eq. (1) and, once normalized to
unity, it can be equivalently written as

〈P (t)〉 = exp
[
αI1/3(t)

]
, (4)

where I(t) is the current, also normalized to unity for sim-
plicity, I(t) = exp[−(t − t0)2/(2σ2)]. Since σ and t0 are
known, Eq. (4) can be used to fit the simulation data, with
α as the only free parameter. It turns out that the best fit,
shown with a solid line in Fig. 8, is for α = 8.9.

Figure 8: Normalized gain envelope after the first undulator
in the case of startup from constant laser power.

Since the best fit value for α is now fixed, we can cal-
culate the autocorrelation trace using Eq. (3). The result is
plotted with a solid line in Fig. 9. It is seen that there is
a good agreement between actual intensity autocorrelation
and the black circles. Deviations can be due to differences
between the 1D and the 3D treatments, to the fact that in
the second stage we work near to the non-linear regime,
that we neglect the temporal dependence of P0, or to the
fact that for these exemplifications we used only 10 shot
averaging. However, this accuracy is sufficient for our pur-
pose of demonstrating the feasibility of the method.

Figure 9: Energy per pulse recorded at the integrating de-
tector as a function of the delay τ . It constitutes the inten-
sity autocorrelation trace.

Now, let us suppose that we do not know the gain curve,
but we simply measure the energy per pulse from our setup,
i.e. the black circles in Fig. 9. By inspecting this autocor-
relation trace, we conclude that the FWHM of the autocor-
relation function is about 1.9μm. Assuming, as discussed
above, a deconvolution factor of 1.5, we obtain an estimate
for the FWHM of the radiation pulse of about 1.3 μm. The
actual FWHM of the average power distribution from Fig.
8 is, instead, of 1.4 μm. This gives an idea of the accu-
racy of the estimation of the radiation profile width with
the deconvolution factor 1.5.

SIMPLEST MEASUREMENT USING A
MAGNETIC CHICANE ONLY

As an alternative to the method considered above, we
also propose a technique to measure the width of ultrafast
radiation pulses based on simpler hardware. The idea is
to rely on a magnetic chicane only, without an optical de-
lay line, and is illustrated in [1]. Also a magnetic chicane
alone can provide a delay of the electron beam relative to
the radiation pulse, as illustrated. However, the compaction
factor of the magnetic chicane must always obey to the con-
straint to be large enough to allow for the microbunching
produced in the first part of the undulator to be washed out.
Therefore, the delay τ cannot be set to zero as in the pre-
vious case, and the presence of a simpler hardware is paid
by the fact that the setup cannot provide a full autocorrela-
tion trace. It is therefore necessary to recover the missing
data with the help of computer simulations and informa-
tion about the electron bunch properties, which is available
from other measurements.
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