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Abstract 
A femtosecond electron bunch is essential for the 

observation of ultrafast phenomena. In order to improve 
the time resolution of pulse radiolysis and ultrafast 
electron diffraction (UED), that involve the use of an 
ultrashort electron bunch and ultrashort light, a 
femtosecond photocathode RF gun was investigated 
experimentally. The bunch length due to space-charge and 
RF effects in the gun was measured. Emittance of the 
femtosecond electron bunch was also measured. 

INTRODUCTION 
Femtosecond electron bunches on the order of 100 fs or 

less [1] can be used in accelerator physics applications 
such as free electron lasers (FELs) and laser-compton X-
ray. Such electron bunches are also key elements in the 
study of ultrafast reactions and phenomena in time-
resolved pump-probe experiments involving the 
application of techniques such as ultrafast electron 
diffraction (UED) and pulse radiolysis. The time 
resolutions in UED and pulse radiolysis depend on the 
electron bunch length. In UED, an electron bunch is used 
as a probe source and ultrafast phenomena, such as laser-
induced phase transients, are monitored using electron 
diffraction patterns. Pulse radiolysis also involves the use 
of an electron bunch and a laser; this technique is a 
powerful tool that can be used for the observation of 
ultrafast radiation-induced phenomena involving the 
mechanical motions of electrons and atomic nuclei in 
reaction mechanisms that are studied in physics, 
chemistry, and biology. At Osaka University, a 
photocathode-based linear accelerator (linac) and a 
magnetic bunch compressor were constructed for 
femtosecond pulse radiolysis involving a femtosecond 
electron bunch. A picosecond electron bunch with a 
transverse emittance of approximately 4 mm-mrad was 
generated using a photocathode RF (radio frequency) gun 
by projecting a Nd:YLF picosecond laser onto a copper 
cathode. The electron bunch was accelerated up to 32 
MeV by the booster linear accelerator with an optimal 
energy-phase correlation in the bunch (the acceleration of 
the bunch head was greater than that of the bunch tail) for 
compression of the bunch. Finally, the electron bunch was 
successfully compressed into femtoseconds, e.g., 98 fs in 
rms at 0.2 nC [2]. A femtosecond electron bunch has been 
used in pulse radiolysis in order to study the solvated 
electrons with time resolution of femtoseconds [3]. 

However, compressed bunch length with the 

picosecond photocathode RF gun and the magnetic bunch 
compressor is limited to ≈ 100 fs because of longitudinal 
emittance and the bunch length before the compression 
[4]. In order to obtain the bunch length of tens of 
femtoseconds or a few femtoseconds, a combination of 
femtosecond photocathode RF gun and the magnetic 
bunch compressor is essential because even the initial 
bunch length before the compression increases the 
compressed bunch length of the order on a few 
femtoseconds because of the higher-order effects such as 
T556 [5]. In order to obtain a femtosecond electron bunch 
in the RF gun, femtosecond ultra-violet (UV) light was 
projected onto the cathode. Bunch length at a gun exit 
was measured with a phase-scan technique [6]. Emittance 
at the linac exit was measured with a quadrupole-scan 
technique.  

EXPERIMENTAL ARRANGEMENT 
Figure 1 shows the experimental arrangement. A 1.6-

cell S-band (2856 MHz) RF gun with a copper cathode 
and a Ti:Sapphire femtosecond laser was used to produce 
a femtosecond electron bunch. In the laser system, the 
mode-locked Ti:Sapphire oscillator (Tsunami, produced 
by Spectra-Physics Co.) was driven with an output of 800 
mW at 79.3 MHz, the 36th sub-harmonic of the 2856 
MHz accelerating RF. The outputs of the oscillator laser 
were amplified up to 0.8 mJ/pulse synchronized with a 35 
MW klystron in a regenerative amplifier (Spitfire, 
produced by Spectra-Physics Co.). The regenerative 
amplifier was driven at 10 Hz and the laser pulse width is 
<130 fs in full-width-half-maximum (FWHM). The 
amplified pulse was converted to femtosecond UV light 
(266 nm) by the THG of nonlinear optics (TPH-Tripler, 
produced by Minioptic technology Co.). The maximum 
power of the UV was 140 μJ/pulse. The femtosecond UV 
light was injected into the RF gun at an incident angle of 
approximately 2o along the electron beam direction, 
where the spot size was varied with an aperture and a 
lens. The beam energy at the gun exit was 4.2 MeV. 

In bunch charge measurement, a current transformer, 
which was calibrated with a picoammeter, set at the gun 
exit was used. The femtosecond electron bunch produced 
by the RF gun was accelerated up to 27 MeV by a 2 m 
long S-band travelling-wave linac. Transverse emittance 
at the linac exit was measured with a standard quadrupole 
scan technique, in which the beam size on a YAG screen 
(YAG1, 100 μm-thick, produced by Ohyo Koken Kogyo 
Co.) was varied by a quadrupole magnet (QM). The 
screen was mounted at 45o with respect to the electron  ___________________________________________  

#koichi81@sanken.osaka-u.ac.jp 
 

WEPA04 Proceedings of FEL2010, Malmö, Sweden

366 Short Pulse FELs



 

 

beam. The electron beam profile on the screen with a 
background subtraction process. Rms bunch length at the 
gun exit was measured by a phase-scan technique [6], in 
which correlated rms energy spread of the electron bunch 
was measured. A YAG screen (YAG2) was set at 0.7 m 
downstream of a bending magnet (BM). The electron 
beam profile on the screen was acquired by a CCD 
camera (CCD2). The bunch length was analyzed with the 
dependence of the energy spread on the accelerating 
phase in the linac with least-squares fitting. 

 

Figure 1: Schematic diagram of femtosecond electron gun 
measurement. 

RESULT AND DISCUSSION 

Bunch Charge 
Figure 2 shows the bunch charge as a function of the 

laser injection phase. The laser energy was varied from 3 
to 40 μJ/pulse with a constant laser spot size of 2 mm in 
diameter. The maximum bunch charge with a UV of 40 μJ 
was 160 pC. In this paper, the bunch charge due to space-
charge and Schottky effects was studied theoretically at 
once. Based on the cathode surface field due to 
accelerating RF and decelerating field of space-charge, 
the bunch charge, Q, can be expressed as, 

 
      (1) 

where Wl is laser power, hν is photon energy, hν0 is work 
function, β is field enhancement factor, σx is laser spot 
radius, E0 is peak RF field, and A is a constant. 

The bunch charge was simulated by a numerical 
solution, in which the varying bunch charge balanced the 
left and right part in Eq. (1). The photon energy and work 
function were 4.7 and 4.3 eV, respectively. With field 
enhancement factor of 16, RF field of 90 MV/m, laser 
spot radius of 1 mm, and, a constant, A, of 6×10-6 (eV)-2, 
the line was obtained by least-squares fitting. According 
to the parameter, QE at zero-charge and zero-field was 
estimated to 7×10-7 and the decelerating field at a charge 
of 160 pC was estimated to 3 MV/m, which corresponded 
to hundredths of the peak RF field. QE of the order on 1
×10-5 was measured at laser injection phase of 30o.  

Beam Emittance 
In the measurement of the emittance, a standard 

quadrupole-scan technique was used with the quadrupole 
magnet (QM) and the screen (YAG1), as shown in Fig. 1. 
Figure 3 (left) shows the emittance at the linac exit as a 
function of the solenoid field. The bunch charge was a   

constant of 50 pC/pulse with the spot size of 2 mm on 
thecathode surface. The laser injection phase was set to 
25o relative to the zero crossing of the RF field for the 
reduction of RF emittance. The energy spread of the 
electron bunch was minimized by the accelerating phase 
in the linac. The beam emittance depends on linear and 
non-linear space-charge effects, the RF emittance, and the 
thermal emittance. The error bar in the data represents the 
error of the least-squares fitting obtained by the 
quadrupole scan technique. The solenoid field of 1.75 kG 
compensated the transverse emittance to 1.2 mm-mrad. In 
the previous study of picosecond RF gun, emittance of ≈ 
3.5 mm-mrad was obtained [2]. The decrease in emittance 
of femtosecond RF gun would be caused by the RF 
emittance due to the bunch length. Figure 3 (right) shows 
the emittance as a function of the bunch charge. The 
solenoid field was fixed to 1.75 kG. The increase in 
emittance due to space-charge effect was obtained as a 
rate of 0.008 mm-mrad/pC. The thermal emittance was 
obtained as 0.8 mm-mrad at zero-charge with a laser spot 
size of 2 mm in diameter on the cathode. The thermal 
emittance of 0.1 mm-mrad would be obtained by 
optimizing the laser spot size to ≈ 0.2 mm and decreasing 
the bunch charge. 
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Figure 3: (left) Emittance at the linac exit as a function of 
solenoid field. (right) Emittance as a function of bunch 
charge. 

Bunch Length Measurement 
In the measurement of the bunch length at the gun exit, 

a phase-scan technique [6] was used with the 45o-bending 
magnet (BM) and the screen (YAG2) located at 0.7m 
downstream of the BM, as shown in Fig. 1.The linac can 
give small/large energy modulation to short/long electron 
bunches. The correlated rms energy spread was measured 
by the dependence of energy spread on the accelerating 
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Figure 2: Bunch charge as a function of laser injection 
phase. The plots indicate laser power of 3, 10, 20, and, 40 
μJ/pulse from the lower. The lines are simulation results 
according to Eq. (1) 
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