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Abstract

An essential element of seeded FEL based on high-gain
harmonic generation (HGHG) or echo-enabled harmonic
generation (EEHG) is an undulator-modulator, in which
interaction with a laser beam modulates the beam energy.
We study how the interaction of electrons in this undulator-
modulator changes the noise properties of the beam.

INTRODUCTION

As was pointed out in Ref. [0], the noise effects in seeded
FELs can be amplified in the process of seeding. Moreover,
the authors of that paper proposed the scaling in which the
noise amplification factor is proportional to the square of
the harmonic factor.

A specific mechanism of noise propagation and amplifi-
cation in HGHG was studied in Ref. [0]. This mechanism
takes into account interaction of electrons in the undulator-
modulator and the resulting evolution of the bunching fac-
tor of the beam in the vicinity of the HGHG harmonics.

In this paper, we extend the analysis of [0] by explic-
itly considering the energy exchange of the electrons in the
undulator-modulator caused by the electron interaction via
undulator radiation. We find that this interaction, combined
with the passage through a chicane, introduces correlations
in the position of electrons. The correlations would then
lead to increased radiation in the final undulator of the sys-
tem, which might be interpreted as an increased noise in the
beam. Our analysis in this paper is limited to the HGHG
seeding only. In a companion paper [0] we expand our
analysis for the case of the echo-enabled harmonic genera-
tion [0, 0].

NOISE AND SEEDING

The quantity that characterizes the beam as a radiating
medium, in a one dimensional model, is

∑N
j,l=1 eik(zj−zl),

where k = ω/c, and zj is the longitudinal coordinate of
j-th particle. This quantity appears in calculation of the
intensity of the radiation of the beam at frequency ω, in
the limit when the transverse size of the beam can be ne-
glected. As always, we separate the terms with j = l in
the sum to obtain N +

∑
j �=l eik(zj−zl). The first term here

is the so called shot noise—it results in an incoherent ra-
diation of the beam equal to the sum of intensities of all
particles. The second term is responsible for the coherent
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radiation due to nonuniform distribution of particles in the
beam as well as radiation due to correlation of positions of
different particles. The relative strength of the second term
in comparison with the first one (the shot noise) is denoted
here by the factor F

F (k) =
1
N

∑

j �=l

eik(zj−zl). (1)

As written, this factor depends on the exact positions of
all particles in the beam. Such information is never avail-
able in a macroscopic system, and we will introduce an
ensemble-averaged value of F

〈F (k)〉 =
1
N

〈
∑

j �=l

eik(zj−zl)〉 ≈ N〈eik(z1−z2)〉. (2)

The averaging here should be performed with the help of a
two-particle distribution f2, which depends on coordinates
and momenta of both particles. In our case, we assume
that the particles are characterized by the longitudinal co-
ordinate z and the relative energy deviation η, so that the
distribution function is f2(z1, η1, z2, η2) normalized so that∫

dz1dz2dη1dη2f2(z1, η1, z2, η2) = 1.
We now consider a seeding system which generates a

density modulation in the beam. Our goal will be to com-
pute the factor 〈F 〉 at the exit from the seeding system,
before the beam enters the undulator-radiator. The coor-
dinates, momenta and the distribution function at the exit
from the seeding system are marked below with a hat, and
we have

〈F (k)〉 = N

∫

dẑ1dẑ2dη̂1dη̂2e
ik(ẑ1−ẑ2)f̂2(ẑ1, η̂1, ẑ2, η̂2).

To find the two-particle distribution function f̂2, one has to
know its initial value before the entrance to the system, and
to solve the kinetic equation which describes evolution of
f2 through the undulator and the chicane. Note that inter-
action of particles in the undulator will lead to establishing
correlations in the system, which will be reflected in the
structure of f̂2. The corresponding technique was devel-
oped in Ref. [0], however it leads to a rather complicated
analysis. We will use a different approach, which involves
working with the variables and the distribution function at
the entrance to the seeding system.

Assuming that one knows the transformation from the
initial coordinates zi, ηi at the entrance to the seeding de-
vice (which are denoted here without the hats), to the fi-
nal ones ẑi, η̂i, instead of averaging over the final coor-
dinates, one can use averaging in Eq. (1) over the initial
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Figure 1: Interaction of two particles in the undulator.

coordinates, assuming that the initial distribution function
fN (z1, η1, z2, η2, . . . , zN , ηN ) is known,

〈F (k)〉 = N

∫

eik[ẑ1(z1,η1,...,zN ,ηN )−ẑ2(z1,η1,...,zN ,ηN )]

fN(z1, η1, . . . , zN , ηN ) dz1 . . . dzN dη1 . . . dηN . (3)

It is reasonable to assume that initially there are no corre-
lations in the beam. This means that the N -particle dis-
tribution function is a product of one particle distributions
f1(zi, ηi),

fN(z1, η1, . . . , zN , ηN ) = f1(z1, η1) . . . f1(zN , ηN ). (4)

In our calculations we will assume a uniform distribution
of particles in the bunch with a Gaussian energy distribu-
tion:

f1(z, η) =
1√

2πσηL
e−η2/2σ2

η for − 1
2L

< z <
1

2L
, (5)

and f1 = 0 otherwise, where L is the length of the bunch.

INTERACTION IN UNDULATOR

The key element of the proposed approach is taking
into account the interaction of particles in the undulator-
modulator. Every electron of the beam (call it the first
particle) emits an electromagnetic wave, that propagates in
front of it, see Fig. ). Whenever this wave reaches another
electron (the second particle), it starts to change its energy,
and depending on the relative position of the two electrons,
either increases of decreases the energy of the second elec-
tron. This energy change can be easily computed in a 1D
model [0]. We will use here the result of Ref. [0] for a he-
lical undulator. According to [0], the accumulated relative
energy change h = ΔE/γmc2 of an electron located at
coordinate z1 in the bunch traveling through an undulator,
due to the presence of another electron at z2 = z1 − ζ, is
given by

h(ζ) = −A

(

1 − ζ

Nuλ0

)

cos k0ζ, Nuλ0 > ζ > 0 (6)

and h(ζ) = 0 otherwise, with the parameter A

A = 2π
e2K2Nuλ2

u

Sγ3mc2λ0
, (7)

where Nu is the number of undulator periods, λ0 the un-
dulator radiation wavelength, K the undulator parameter,
S the transverse area of the beam, and λu the undulator
period. The plot of the function h is shown in Fig. .

Figure 2: The interaction function h as a function of the
argument k0ζ for Nu = 10.

We will consider now an HGHG seeding in which the
beam is first modulated in energy due to interaction with a
laser at wavelength λ0 in an undulator-modulator, and then
sent through a chicane with the strength R56. The resulting
functions η̂i and ẑi are

η̂i = ηi − Δη sin(k0zi) +
∑

j �=i

h(zi − zj),

ẑi = zi + R56η̂i, (8)

where Δη is the amplitude of the energy modulation.
Substituting (8) into (3) and using (5) we obtain

〈F (k)〉 =
N

LN
e−k2R2

56σ2
η

∫ L/2

−L/2

dz1 . . .

∫ L/2

−L/2

dzN

exp
[

ik{ζ − R56Δη [sin(k0z1) − sin(k0z2)] (9)

+ R56

(
h̃(ζ) +

∑′
[h(z1 − zn) − h(z2 − zn)]

)
}
]

,

where ζ = z1 − z2, h̃(ζ) = h(ζ)− h(−ζ),
∑′ =

∑
n�=1,2.

This equation establishes a mathematical framework for
calculation of the noise properties in the system.

NOISE AMPLIFICATION

In this paper we use the approximation

kR56h ∼ AkR56 � 1, (10)

and Taylor expand the exponentials in (9). For typical un-
dulators used in practice, Eq. (10) is well satisfied. Note
that integrals over variables z3, . . . zN in (9) are separable
and identical. The product of N−2 integrals can be written
as

(
1
L

∫ L/2

−L/2

dzie
ikR56[h(z1−zi)−h(z2−zi)]

)N−2

. (11)

Using (10) and expanding the exponential in the Taylor se-
ries up to the quadratic terms in h, we notice that the linear
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in h term vanishes after the integration, and we are left with

(

1 − k2R2
56

2L

∫

dzi [h(z1 − zi) − h(z2 − zi)]
2

)N−2

≈
(

1 − n0
k2R2

56

2N

∫

dzi [h(z1 − zi) − h(z2 − zi)]
2

)N

,

(12)

and we have defined the particle density n0 = N/L. Tak-
ing the limit N → ∞ and using limN→∞(1 + x/N)N =
ex, one obtains

〈F (k)〉 =
n0

L
e−k2R2

56σ2
η

∫ L/2

−L/2

dz1dz2e
ikζ(1 + Γ1)eΓ2

exp
[

ikR56{h̃(ζ) − Δη [sin(k0z1) − sin(k0z2)]}
]

(13)

where Γ1 = ikR56h̃(ζ) and

Γ2 = −n0

2
k2R2

56

∫

dz [h(z1 − z) − h(z2 − z)]2 . (14)

The integral in (14) can be easily computed using (6). In
the limit Nu � 1 the calculation gives

Γ2 =
n0

2
k2R2

56A
2Nuλ0

[

R

(
ζ

Nuλ0

)

cos k0ζ − 1
3

]

,

(15)

with R(x) =
(

1
3 − 1

2 |x| + 1
6 |x|3

)
for x ≤ 1 and R(x) = 0

otherwise.
We will further limit our analysis by assumption Γ2 � 1

or n0k
2R2

56A
2Nuλ0 � 1. We then have

(1 + Γ1)eΓ2 ≈ 1 + Γ1 + Γ2. (16)

The first term in this equation (unity) corresponds to the
limit of no interaction in the undulator, and gives 〈F (k)〉
corresponding to the standard HGHG density modulation
of the beam. The second and the third terms are responsible
for the noise amplification. Using (16), due to the assumed
smallness of Γ2, we can neglect the addendum −1/3 in
(15) in comparison with 1 in (16). In what follows, we re-
define Γ2 dropping −1/3 in (15). That makes the function
Γ2 equal to zero outside of the interval |ζ| < Nuλ0.

CONTRIBUTION OF Γ1 AND Γ2

Let us first focus on the contribution of Γ1 in Eq. (16) to
〈F 〉, which we denote by 〈F1〉

〈F1(k)〉 =
1
L

ikn0R56e
−k2R2

56σ2
η

∫ L/2

−L/2

dz1

∫ L/2

−L/2

dz2

eik{ζ−R56Δη[sin(k0z1)−sin(k0z2)]}h̃(ζ). (17)

Using the expansion e−ia sin(x) =
∑∞

p=−∞ Jp(a)e−ipx,
where Jp is the Bessel function of order p, one finds

〈F1(k)〉 =
1
L

ikn0R56e
−k2R2

56σ2
η

×
∑

p,r

Jp(kR56Δη)Jr(kR56Δη)
∫ L/2

−L/2

dz1

∫ L/2

−L/2

dz2

× eikζ−ipk0z1+irk0z2 h̃(ζ). (18)

In the limit when L is large, L � 1/k0, the dominant con-
tribution to the integral comes from the terms with p = r,
in which case the whole integrand depends on the differ-
ence z1 − z2 only. Using this simplification we arrive at

〈F1(k)〉 =
1
L

n0ikR56e
−k2R2

56σ2
η

∑

p

Jp(kR56Δη)2

×
∫ L/2

−L/2

dz1

∫ L/2

−L/2

dz2e
i(k−pk0)ζ h̃(ζ). (19)

We can now transform the integration to the variables
ζ = z1 − z2 and Z = (z1 + z2)/2. The integration over
ζ is limited by a small range of 0 < ζ < Nuλ0, much less
than L, hence approximately

∫
dZ → L, which gives

〈F1(k)〉 = ikn0R56e
−k2R2

56σ2
η

×
∑

p

Jp(kR56Δη)2
∫

dζei(k−pk0)ζ h̃(ζ). (20)

The function h̃ (as well as h) is an oscillating function
with the period λ0 and slowly changing amplitude, hence
its spectrum is localized near the wavenumbers ±k0. This
means that, for a given value of p, the integral in Eq. (20)
is localized in the two narrow spectral regions around the
frequencies ω0(p ± 1). Let us assume that the radiator-
undulator is tuned to the frequency mω0 and we are in-
terested in the noise in the frequency interval around this
value, k = mk0 + Δk, with Δk � k. The main contri-
bution to this interval comes from two terms in (20) with
p = m ± 1. Leaving only these terms, we obtain

〈F1(k)〉 = in0mk0R56e
−m2k2

0R2
56σ2

η

×
(

Jm−1(mk0R56Δη)2
∫

dζei(Δk+k0)ζ h̃(ζ)

+ Jm+1(mk0R56Δη)2
∫

dζei(Δk−k0)ζ h̃(ζ)
)

. (21)

Using the notation

bq,p = e−q2k2
0R2

56σ2
η/2|Jq−p(qk0R56Δη)| (22)

we can also write

〈F1(k)〉 = n0mk0R56

×
(

b2
m,1H1(Δk) − b2

m,−1H1(−Δk)
)

, (23)
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where

H1(Δk) = i

∫ ∞

−∞
dζei(Δk+k0)ζ h̃(ζ)

= 2ANuλ0g1

(

2πNu
Δk

k0

)

, (24)

with g1(x) = (x − sin x)/2x2. In derivation of (24) we
assumed Nu � 1 and Δk � k0. Eq. (23) can also be
written as

〈F1(k)〉 = 2An0mk0R56Nuλ0g1

(

2πNu
Δk

k0

)

× (b2
m,1 + b2

m,−1). (25)

Let us now focus on the contribution of Γ2 in Eq. (16) to
〈F 〉 which we denote by 〈F2〉. Calculations analogous to
that of the previous section lead to the following result

〈F2(k)〉 =
1
2
n2

0m
2k2

0R
2
56A

2Nuλ0H2(Δk)(b2
m,1 + b2

m,−1)

H2(Δk) =
∫ ∞

−∞
dζd̃(ζ)ei(Δk+k0)ζ , (26)

where d̃(ζ) = R (|ζ|/Nuλ0) cos k0ζ.
The function H2(Δk) can be easily computed

H2(Δk) =
1
8
Nuλ0g2

(

2πNu
Δk

k0

)

, (27)

with

g2(x) =
4
x4

[x2 − 2x sin(x) − 2 cos(x) + 2]. (28)

The function g2 is always positive and leads to the ampli-
fication of the noise. The quadratic term (26) was also de-
rived in [0].

DISCUSSION AND NUMERICAL
EXAMPLE

Note that in contrast to the statement of Refs. [0, 0] that
the noise scales as m2 we found in our model two noise
terms (25) and (26). The first one is linear in m, and the
second one is quadratic. Moreover, the first term being anti-
symmetric with respect to the central frequency mω0 takes
both negative and positive values, and as demonstrated in
[0] can lead to the noise suppression in some cases.

As a numerical example, let us consider the nominal pa-
rameter of the seeded HGHG FEL at the Fermi@Elettra
project [0]. The electron beam energy is 1.2 GeV, the slice
energy spread is 150 keV and the peak current is 800 A.
We assume the wavelength of the seed laser λ0 = 240
nm and consider generation of the 6-th harmonic, with the
wavelength of 40 nm (k = 0.16 nm−1). The modula-
tor undulator parameters are: Nu = 19, λu = 16 cm,
with the energy modulation amplitude ΔE = 2 MeV. Al-
though FERMI will have a plane undulator-modulator, here

Figure 3: Noise amplification factor in the vicinity of 40
nm (6th harmonic) for FERMI FEL.

we use for estimates our model that assumes a helical un-
dulator with the value of K , which can be inferred from
the above parameters, K = 2.7. The chicane strength is
R56 = 36 μm. We assume that the transverse size of the
beam in the modulator-undulator is σx = σy = 100 μm
and use for the parameter S in (7) S = 2πσzσy .

First we estimate the parameter A in (7) to obtain A =
3.2 × 10−10. We then find Γ1 ∼ kR56A ≈ 1.8 × 10−6,
Γ2 ∼ n0

2 k2R2
56A

2Nuλ0 ≈ 1.2 × 10−4, which shows that
both Γ1 and Γ2 are much smaller than one, and the Taylor
expansion used above is valid. The plot of the noise am-
plification factor calculated using (25) and (26) is shown in
Fig. . We see that at the center of the line, the noise is am-
plified by almost two orders of magnitude. The dominant
contribution to the noise amplification in this case is due to
the quadratic term (26). Note that is scales as N4

u with the
number of periods in the undulator.
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