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range, and is sufficient to produce temporally transform-
limited seed pulses with durations of 120 fs (rms) at 200 
eV and 12 fs (rms) at 2000 eV.  The estimate of the 
resolving power included contributions from the size of 
the FEL source inside the SASE undulator, the size of the 
exit slit in the dispersion plane assuming to vary from 2 
μm at 2000 eV to 10 μm at 200 eV, slope error of the 
grating and optical aberrations.  The grating performance 
was calculated using the ABCD matrix method [3] 
applied to fully coherent Gaussian beams [4] and for VLS 
gratings [5].  The high resolving power is achieved due to 
the high demagnification at the exit slit.  

 
Table 1:  Grating Specifications 

 
Resolving Efficiency 

A simple calculation assuming a lamellar grating 
profile and complete shadowing of the groove was used to 
estimate the grating efficiency as shown in the right panel 
of Fig. 2 (yellow curve) , and a more sophisticated 

method based on wave propagation gave similar but 
lower values (purple crosses).   The low efficiency was 
due to the incidence and diffraction angles being greater 
than the critical angle of the grating coating assumed to 
be Boron.   

Imaging in Dispersion Plane 
The incident X-ray beam is imaged at the exit slit and 

re-imaged at the re-entrant point inside the seeding 
undulator by a spherical mirror M3 and the variation of 
the Gaussian beam waist as a function of tuning energy is 
shown in Fig. 3, where the image size (purple curve) 
matches that at the source (blue curve) at 2000 eV, but is 
smaller by about 10% at 200 eV.  The specifications of 
the mirrors of both vertical collimation and the horizontal 
focusing mirrors are given in Table 2.  The radius of M3 
is 28.881 m, giving a focal length of 137.9 mm at an 
incidence angle of 9.555 mrad.  The exit slit is positioned 
near the back focal point of M3 so the very narrow image 
of the input beam is magnified to a similar size to the 
original size at the re-entrant point.  The distance from M3 
to the re-entrant point is ~ 2 m.  The exact location of the 
waist of the seed beam shifts about the re-entrant point 
while energy is being tuned due to the coherent nature of 
the FEL beam propagation, though the maximum shift is 
~ 0.16 m or about 1/30 of the Rayleigh length, thus not 
significantly impacting the seed power density inside the 
2nd undulator.  

Imaging in Sagittal Plane 
In the sagittal plane, the source is imaged in a single 

step at the exit slit by the cylindrical focusing mirror M1, 
and similar dependence of image size on tuning energy is 
obtained as shown in Fig. 3.  The radius of M1 is 0.133 m, 
giving a focal length of 4.926 m at an incident angle of 
13.5 mrad.  Maximum shift in the exact location of the 
waist is ~ 0.32 m or about 1/15 of the Rayleigh length and 
thus has negligible effect on the seed power density. 

Parameter Symbol Value Unit 

Line spacing σ 0.45 μm 

Order n +1  

Linear coeff. σ1 -3.0225x10-7  

Groove height h 5.393 nm 

Grating profile  Lamella/Steps  

Incident angle θ 4.79 – 15.1 mrad 

Exit angle θ ’ 52.7 – 166.9 mrad 

Included angle 2Θ 176.7 – 169.6 degree 
Object 
distance Lobj ~ 9 m 

Image distance Limg ~ 3 m 

Exit slit size S 2 – 10 μm 
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Figure 2: Resolving power and efficiency of the grating monochromator. 
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Table 2: Specifications of mirrors 

Parameter Symbol Value Unit 
Cylindrical 
mirror radius R1 0.1330 m 

focal length f1 4.9261 m 

Incident angle ξ 13.50 mrad 
Planar mirror 
radius R2 ∞ m 

Incident angle γ ’ 5.700 – 67.93 mrad 
Spherical 
Mirror radius R3 28.8807 m 

focal length f3 0.13790 m 

Incident angle η 9.555 mrad 
 
 

Output Seed Power 
The output power of the seed beam at the re-entrant 

point was calculated and shown in Fig. 4 by assuming a 
certain input power (blue curve in left panel in Fig. 4) and 
using the bandwidth reduction by the monochromator and 
the simple efficiency estimate (purple curve) and more 
rigorous calculation (yellow triangle).  The necessary 
power for effective seeding is shown as the cyan curve 
which is smaller than the expected output of the seed 
beam. 

Optical Delay 
The optical delay is ~ 5 ps and its energy dependence is 

shown in the right panel of Fig. 4.  The delay is not 
constant but varies with the energy due to the X-rays 
reflecting off M2 at different points and taking different 
optical paths as energy is being tuned.  The e-beam 
excursion time needs to match this variation for 
maintaining time overlap with the seed pulse.   
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Figure 3: Imaging in vertical (dispersion) and sagittal planes. 
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Figure 4: Output seed power and optical delay 
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Ray-tracing Results 
Ray-tracing was performed which verified the designed 

performance including the resolving power, imaging at 
the re-entrant point both by the cylindrical focusing and 
the spherical collimation mirrors. There are aberrations by 
the M3 mirror due to the large magnification needed to 
return the small vertical beam size at the exit slit to its 
original value at the re-entrant point. 

 
In summary, a complete optical system for self-seeding 

the future LCLS-II is described, and its performance 
meets all requirements in resolving power, imaging, and 
output power.  
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