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Abstract 
 Periodical Bragg structures can be considered as an 

effective way of controlling the electromagnetic energy 
fluxes and provision of spatial coherence of radiation in 
the electron devices with oversized interaction space. 
Advance of long-pulse FEL with 2D distributed feedback 
into the terahertz waveband can be achieved by using a 
two-mirror scheme in which an advanced Bragg reflector 
(a periodical structure exploiting the coupling between the 
two counter-propagating waves and a cutoff mode) is 
used as an upstream mirror. In the planar model 
considered in the present paper this reflector provides 
effective mode selection over the "narrow" transverse 
coordinate directed between the plates. Synchronization 
of radiation from a sheet electron beam over the "wide" 
coordinate can be obtained by exploiting structures 
providing 2D distributed feedback used as a downstream 
mirror.  

 

INTRODUCTION 
Distributed feedback (DFB) involving periodical 

Bragg structures is widely used in generators of coherent 
radiation based on principles of both classical and 
quantum electronics. Correspondingly the frequency 
range in which the oscillators of this type function 
includes millimeter and optical (infrared) bands  [1-4]. In 
the present work we show that Bragg structures of a 
specific type can be effectively used in application in the 
Terahertz range in application to free electron lasers 
(FEL). The advantage of suggested structures along with 
their compatibility with intense electron beam transport 
systems is the possibility of mode selection over both 
transverse and longitudinal indices which is a necessary  
condition of obtaining the spatially coherent radiation in 
oversized electrodynamical systems.  

The planar scheme of THz band FEL under 
consideration is shown in Fig.1. We suggest using a 
hybrid two-mirror cavity as an electrodynamical system 
consisting of an advanced Bragg structure as an input 
mirror and a conventional Bragg reflector as an output 
mirror. Bragg structures (reflectors) are formed by the 
sections of a planar waveguide with shallow sine 
corrugation of the surface 

( ) ( )zhbbzb jj cos0 += ,                                (1) 

where 0b  is the gap between the plates, jb  are the 

amplitudes of corrugation, 2j jh dπ= , jd  are their 

periods. Here index 1=j  refers to the parameters of the 

input structure and the index 2=j  to the parameters of 
the output one. 

In a conventional output Bragg reflector the coupling 
between the two paraxial wave beams propagating in 
opposite directions is employed when the Bragg 
resonance condition is satisfied 

hh 22 ≈ ,                                                                (2) 
where h  is the longitudinal wavenumber of both forward 
and backward waves. The peculiarity of the advanced 
Bragg reflector scheme is the use of coupling between the 
longitudinal and transverse (with respect to the direction 
of the particles translational velocity 00VzV rr

= ) wave 

beams when the following Bragg resonance condition is 
satisfied 

 hh ≈1 .                                                                    (3) 
Obviously the period of the advanced Bragg mirror is 

two times larger than the one of the conventional Bragg 
structure. Reflections into the wave beams propagating in 
the transverse directions (along the y axis, see Fig.1)  
forming the standing wave (the cutoff mode) take place 
when the gap between the plates and the corrugation 
period are bound by the following condition: 

210 sdb ≈ ,                                                         (4) 

where s  is integer. Within the regular planar waveguide 

mode classification the described wave beams form the  

sTM  mode with its frequency close to the cutoff one 

0bscc π=ω . 

In the present paper we investigate the dynamics of 
FEL with the `described type of a hybrid Bragg cavity. 
Unlike the previous works  [5,6] the transverse structure 
of paraxial wave beams is not assumed to be fixed which 
allows us to be more accurate in determining the 
maximum acceptable oversize factor (ratio between the 
gap 0b  and the wavelength λ ) that allows to maintain the 

coherence of radiation, which leads in fact to the 
frequency range of the suggested FEL scheme. 

We also show that by combining the advanced Bragg 
mirror with two-dimensional one the spatial coherence of 

Figure 1: The scheme of planar FEL with advanced input
and conventional output Bragg reflectors. 
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the output radiation can be obtained over both transverse 
coordinates. 

 
 

THE MODEL AND BASIC EQUATIONS 
First we consider a 2D model assuming that the 

planar waveguide is infinite along the “wide” transverse 
coordinate (x in Fig.1). When the Bragg scattering 
condition (3) is satisfied the field in the advanced Bragg 
structure can be can be presented as a sum of the two 
quasi-optical TM type beams propagating in opposite 
directions

( ) ( ) ( ) ( )[ ]hztihzti etyzaetyzaxH +ω
−

−ω
+ += ,,,,Re0

vr
       (5a) 

and a cutoff sTM mode   

( ) ( )0 Re , sin i tH x f z t h y e ω
⊥⎡ ⎤= ⎣ ⎦

r r .                              (5b) 

Here ( )tyza ,,±  and ( )tzf ,  are slowly varying in 
time and space and the carrier frequency is chosen to be 
equal to the cutoff frequency cωω = .  

In an FEL the electron flow wiggling in the undulator 
field interacts with and amplifies the co-moving wave 
beam +a  in the conditions of the combination 
synchronism  

00 VhhV u≈−ω ,                                                    (6) 

where uu dh π= 2  and ud  is the wiggler field period. 

The synchronous wave +a  scatters into the backward 

wave −a  via the excitation of the cutoff mode f on a 
Bragg structure (1). As a result the coupling between the 
cutoff and propagating wave beams makes it possible to 
combine the mode selection mechanisms used in 
gyrotrons and orotrons ([7] and [8]) with frequency 
Doppler up-conversion typical for FEL. 

Non-stationary equations for the amplitudes of coupled 
waves can be presented in the form 
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where ( )Yδ  is the delta function. Here we used the 
following normalized variables and parameters  
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parameter, 0I  is the beam current density, 
2mcheHK uu= , uH  is the undulator field amplitude, 

( )22
0 1 K+γ≈μ −  is the electorns' inertial bunching 

parameter, ( ) 212
00 1
−

β−=γ , cc ωπ=λ 2 , 
0

h
b
νσ =  is the 

Ohmic losses parameter for the cutoff mode, ν  is the skin 
depth (Ohmic losses for propagating waves A±  are 

negligibly small), 2011 Cbb=α  is the waves coupling 
coefficient, ( )YF  describes the transverse distribution of 
the electron current. The excitation factor for the 
synchronous wave, the RF current 
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can be found from the averaged particles’ motion 
equations 
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with boundary conditions  

[ ) ( ) Δ−=θ∂∂β+τ∂∂π∈θ=θ
=

−
= 0

1
000 ,2,0

ZZ Z .  (9) 

In the conventional output Bragg mirror the direct 
coupling between forward and backward propagating 
wave beams takes place which can be described by the 
equations  
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where 2022 Cbb=α . 

In the regular resonator section we describe the 
dynamics of electron-wave interaction by the Eqs. (7) or 
(10) where we put 1 2 0α α= = . 

For propagating waves boundary conditions at 
resonator edges take a form 

0 0 , 0Z Z LA A A+ = − == =
) ) )

,    (11) 

For the cutoff mode we apply the radiation boundary 
conditions at the edges of corrugation [9,10] 
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where L is the normalized length of the resonator L=Chl.  
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Figure 2: Establishment of steady state oscillations at 
various values of the gap parameter B. Here the 
efficiency (up) and the normalized radiation frequency 
(down) temporal dependencies are depicted. 
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Figure 4: Dependence of the steady state regime 
characteristics on the frequency synchronism detuning. 

Figure 3: Spatial structures of the partial waves in the 
steady-state regime. 

Electron efficiency is determined by the following 
relations 
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SIMULATIONS AND RESULTS 
Eqs (7-10). were simulated using the multiwave 

approach that consists in expanding the field into the 
series of transverse waveguide modes (see [11]). 

We simulate the nonlinear dynamics of an FEL for 
the working frequency f =1 THz. We took the particles 
energy to be 5.5 MeV, the undulator period 4 cm, and the 
undulator field amplitude uH =2.8 kOe. In this case for a 

sheet electron beam with injection current density 
130 A/cm2 the Pierce parameter is 4104.1 −⋅≈C . Lengths 
of the input and the output Bragg reflectors were taken 

2,1l =13.5 cm, corrugation depths 2 =1b 5 µm and 

2 =2b 1.5 µm, and the periods =1d 0.03 cm and 
=2d 0.015 cm; the length of regular section was taken 

0l =150 cm.  
In Fig.2 we present the results of simulation of the 

steady-state oscillation regime establishment. Spatial 
distributions of the partial waves fields ±â  in the steady-
state regime presented in Fig.3 show that at the gap values 
reaching 20λ  the output radiation possess rather high 
spatial homogeneity and its structure is close to the TEM 
mode. 

Simulation shows that at the chosen oversize factor 
the input advanced Bragg reflector provides the 
establishment of single-frequency steady-state regime 
(Fig.2). This regime is stable to the changing of electron 
beam parameters. In Fig.4 we show that varying the 
electron synchronism mismatch Δ  parameter leads to the 
smooth changing of the radiation frequency. At 1=B  
there are no frequency jumps and at 2B =  there is a 
single frequency jump near the boundary of the 
oscillations band.  

Thus the suggested scheme of THz band FEL allows 
to provide the conditions of self-excitation, effective 
energy extraction and spatial coherence of radiation at the 

Figure 5: The scheme of planar FEL with advanced input 
and 2D output Bragg reflectors. 
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Figure 7: Dependence of radiation frequency and the 
efficiency on electron synchronism mismatch. 

Figure 6. Spatial structures of the propagating waves 
excited in an FEL with advanced Bragg and 2D Bragg 
reflectors. 

oversize factors not less than 10-20 wavelengths which is 
sufficient for the forming of transportation channel for the 
intense sheet beam. Simulation shows that at =0b 20λ  
up to 80% of radiated power is carried from the 
interaction space with forward wave â+

. At the electron 
efficiency of η  ~ 2% power density is about 6.5 МW/cm. 
Time of oscillations’ establishment reaches 300 ns. 

It is important to note that for a planar system open in 
the xr  direction (see Fig.1), the spatial synchronization 
along this coordinate should be provided by the 
diffraction of radiation while the corresponding Fresnel 
parameter  

12 ≤λ= effxF llN , 

где ( )210 1 RRlleff −=  is the effective length of 

propagation that takes into account the finite values of 

mirrors’ reflection coefficients 2,1R . At the chosen 
parameters the allowable width of the oscillator xl  is  in 
the order of several centimeters which is comparable to 
the dimensions of FEL with conventional quasi-optical 
cavities [12-14].  

For the width of the system exceeding the stated limits 
the transverse synchronization of radiation can be 
obtained by using the 2D distributed feedback Bragg 

structure [15] used as a downstream mirror. This system 
is depicted in Fig.5. Fig.6 shows the spatial structures of 
the excited fields are shown evidencing the 
synchronization of radiation over the x coordinate. Fig.7 
shows the dependence of radiation frequency on electron 
synchronism mismatch illustrating the stability of 
radiation frequency to the varying beam parameters. 
Estimations in this case that for the current of 120 A/cm 
and electrons energy of 6.5 MeV the 1 THz oscillation 
regime can be realized with the output power of 350 MW 
at the efficiency of 2%. 
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